e的z次方=1 根号3i
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:41:35
z^2=【(1+i)/根号2】^2=2i/2=i所以z^20+z^10+1=i^10+i^5+1=(i^2)^5+(i^2)^2*i+1=(-1)^5+(-1)^2*i+1=i
|Z+(1-i/1+i)^6|≤|-根号3i||Z+(-i)^6|≤根号3|Z-1|≤根号3Z对应半径为根号3的园面SZ=3π
3次根号x=4,且根号y-2z+1+(2z-6)的平方=0x=64,y-2z+1=0,2z-6=0解得x=64,y=5,z=33次根号负x-y的3次方-z的3次方=-4-125-27=-156
z=(√3+i)/(1-i√3)^2z*z-=|z|^2=[|√3+i|/|(1-i√3)^2|]^2=|√3+i|^2/[|1-i√3|^2}^2=4/4^2=1/4.
z=√3i/(1+√3i)=√3i(1-√3i)/(1+√3i)(1-√3i)=(√3i+3)/(1+3)=3/4+√3i/4所以z的共轭复数的虚部是-√3/4
|z|=|1/(√3-i)|=1/√[(√3)^2+(-1)^2]=1/2
满足|z|=1的点都在单位圆上,|1+根号3*i-z|就是点1+根号3i到点z的距离.连接z与圆心O,与单位圆交于两点,离1+根号3i近的点就取距离最小,离1+根号3i远的点取距离最大.答案:1和3,
是z=1+i√3=2(cosπ/3+isinπ/3)所以z³=2³*(-1)则z^6=2^6所以z^600=2^600
设z=a+bi|a+bi+√3+i|=|(a+√3)+(b+1)i|=√[(a+√3)²+(b+1)²]=1|(a+√3)²+(b+1)²=1令a=-√3+si
题目有错!因为复数本身没有最大或最小值,复数的模才有最大或最小值.|1+√3i+z|≥|1+√3i|+|z|=2+2=4.即复数1+√3i+z的模,只存在最小值:4,不存在最大值!
|√3+i|=2=>|√3+i|^4=2^4|2-2i|=2√2=>|2-2i|^4=2^6|1-√3i|=2=>|1-√3i|^8=2^8∴|z|=2^(4+6-8)=4
Z=(-1+i/1+根号3i)的6次方=[(-1+i)^2/(1+根号3i)^2]^3=[(-2i)/(2+2根号3i)]^3=[-i/(1+√3i)]^3=i/[(1+√3i)^2*(1+√3i)]
z=(1+根号3i/1-根号3i)^2z=(1+√3i/1-√3i)^2={(1+√3i)*(1+√3i)/【(1-√3i)*(1+√3i)】}^2=(-1/2+√3i)^2=-1/2-√3i/2|z
-1/2-根号3/2i
z=4(√3/2-i/2)=4(cos11π/6+isin11π/6)z^6=4^6(cos11π+isin11π)=-4096再问:������ʦ�����ǵĴ������ʽ��Z=4[cos(-�
本题应该有误,条件过多.点击放大:
设z=a+bi可得:(1+i)(a+bi)=a+ai+bi+bi^2=(a-b)+(a+b)i=1+√3i所以可得:a-b=1a+b=√3解得:a=(√3+1)/2,b=(√3-1)/2|z|=√(a
e^z=1+√3i=2e^i(π/3)=e^[ln2+i(2kπ+π/3)]得:z=ln2+i(2kπ+π/3),这里k为任意整数
1、设复数Z=a+bi,则有a+bi+1=(a+bi-1)i,即a+bi+1=(a-1)i-b,即有a+1=-b且b=a-1,解得a=0,b=-1.第二题同上方法,不算了.