求∫▒(1 (sin⁡x cos⁡x ))dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:55:11
求∫▒(1 (sin⁡x cos⁡x ))dx
不定积分∫(sin2x)/(sin²x)dx ∫sin³xcos²xdx

∫(sin2x)/(sin²x)dx=∫(2sinxcosx)/(sin²x)dx=2∫cosx/sinxdx=2∫(1/sinx)d(sinx)=2ln|sinx|+C_____

求函数f(x)=sin^4x+cos^4x+sin^2xcos^2x/2-2sinxcosx-1/2sinxcosx+1

先化简.f(x)=(sin^4x+cos^4x+sin^2xcos^2x)/(2-2sinxcosx)-1/2sinxcosx+1/4cos^2x=【(sin²x+cos²x)&s

求函数y=sin^4x+cos^4x+4sin^2xcos^2x-1的最小正周期和值域

y=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=sin^2(2x)/2=(1-cos4x)/4周期显然是pi/2

求函数y=sin^4x+cos^4x+4sin^2xcos^2x-1的最小正周期 值域

y=sin^4x+cos^4x+4sin^2xcos^2x-1=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=si

求方程[xcos(x+y)+sin(x+y)]dx+xcos(x+y)dy=0的通解,

∵[xcos(x+y)+sin(x+y)]dx+xcos(x+y)dy=0==>xcos(x+y)dx+xcos(x+y)dy+sin(x+y)dx=0==>xcos(x+y)(dx+dy)+sin(

求证 cos*xcos*y + sin*xsin*y + sin*xcos*y + xin*ycos*x = 1

合并同类项么,很简单的只要你愿意去做左边=cos*x(cos*y+sin*y)+sin*x(cos*y+sin*y)=cos*x+sin*x=1=右边

问高数求导 ∫sin^3xcos^2xdx

∫sin^3xcos^2xdx=-∫sin^2xcos^2xdcosx=-∫(1-cos^2x)*cos^2xdcosx=-∫(cos^2x-cos^4x)dcosx=(1/5)*cos^5x-(1/

设x∈(0,π/2),如何求sin^2xcos^2x+2/sin^2xcos^2x-2的最小值.

用基本不等式sin^2xcos^2x+2/sin^2xcos^2x-2≥2√2-2公式没有错,但是等号无法成立,若成立,则sin²x*cos²x=√2但是sin²x*co

求不定积分(1/sin^2xcos^2x)dx

原式=∫4dx/(2sinxcosx)²=4∫dx/sin²2x=2∫csc²2xd2x=-2cot2x+C

求不定积分,∫sin^2xcos^2x dx

利用半角公式如图降次计算.经济数学团队帮你解答,请及时采纳.

∫ ( cos²x-sin²x/sin²xcos²x) dx=?求积分

∫(cos²x-sin²x)/(sin²xcos²x)dx=∫cos2x/[(1/2)²sin²2x]dx=2∫1/sin²2xd

3道不定积分数学题求下列不定积分(1)cos2t/cost –sint dt(2)cos2x/sin^xcos^x dx

看:(对不起,第一条的变数全部都是t,刚才做的时候不小心把t打错作x了)

求不定积分∫xcos xdx

∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc

求sin^4x+cos^4x+4sin^2xcos^2x-1的最小正周期及值域.

y=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=sin^2(2x)/2=(1-cos4x)/4周期显然是pi/2

求定积分∫上限π/2,下限0 4sin^2xcos^2xdx,

这题方法有很多,你可以把cos^2x换成1-sin^2x4sin^2xcos^2x=4(sin^2x-sin^4x)sin^2x和sin^4x积分是有公式的.但是一般人估计也记不得,所以方法二:为了方

∫(1/sin²xcos²x)dx怎么求,

∫(1/sin²xcos²x)dx=∫(sin2x+cos2x/sin²xcos²x)dx=∫(1/sin²x+1/cos²x)dx=-co

急求∫tan^(-1)(1/x)dx 及 ∫sin^6xcos^2xdx详细解答,且要用到分部积分法的~

∫arctan(1/x)dx=∫(x)'arctan(1/x)dx=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx=xarctan(1/x)+∫1/(x+1/x)d

求不定积分∫xcos(x^2)dx

∫xcos(x^2)dx=∫cos(x^2)(xdx)=∫cos(x^2)(d(x^2)/2)=(1/2)∫cos(x^2)d(x^2)=(1/2)sin(x^2)+C

∫(1/sin³xcos³x)dx 怎么解

1/[(sinx)^3(cosx)^3]=[sinx/(cosx)^3]+(2/sinxcosx)+[cosx/(sinx)^3]∫(1/sin³xcos³x)dx=[(1/2)/

∫sin²xcos³x dx

∫sin^2xcos^3xdx=∫sin^2x(1-sin^2x)dsinx=∫sin^2x-sin^4xdx=(1/3)sin^3x-(1/5)sin^5x+C不是让你求助我吗.再问:∫sin^2x