求∫▒(1 (sinx cosx ))dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:55:11
∫(sin2x)/(sin²x)dx=∫(2sinxcosx)/(sin²x)dx=2∫cosx/sinxdx=2∫(1/sinx)d(sinx)=2ln|sinx|+C_____
先化简.f(x)=(sin^4x+cos^4x+sin^2xcos^2x)/(2-2sinxcosx)-1/2sinxcosx+1/4cos^2x=【(sin²x+cos²x)&s
y=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=sin^2(2x)/2=(1-cos4x)/4周期显然是pi/2
y=sin^4x+cos^4x+4sin^2xcos^2x-1=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=si
∵[xcos(x+y)+sin(x+y)]dx+xcos(x+y)dy=0==>xcos(x+y)dx+xcos(x+y)dy+sin(x+y)dx=0==>xcos(x+y)(dx+dy)+sin(
合并同类项么,很简单的只要你愿意去做左边=cos*x(cos*y+sin*y)+sin*x(cos*y+sin*y)=cos*x+sin*x=1=右边
∫sin^3xcos^2xdx=-∫sin^2xcos^2xdcosx=-∫(1-cos^2x)*cos^2xdcosx=-∫(cos^2x-cos^4x)dcosx=(1/5)*cos^5x-(1/
用基本不等式sin^2xcos^2x+2/sin^2xcos^2x-2≥2√2-2公式没有错,但是等号无法成立,若成立,则sin²x*cos²x=√2但是sin²x*co
原式=∫4dx/(2sinxcosx)²=4∫dx/sin²2x=2∫csc²2xd2x=-2cot2x+C
利用半角公式如图降次计算.经济数学团队帮你解答,请及时采纳.
∫(cos²x-sin²x)/(sin²xcos²x)dx=∫cos2x/[(1/2)²sin²2x]dx=2∫1/sin²2xd
看:(对不起,第一条的变数全部都是t,刚才做的时候不小心把t打错作x了)
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
y=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=sin^2(2x)/2=(1-cos4x)/4周期显然是pi/2
这题方法有很多,你可以把cos^2x换成1-sin^2x4sin^2xcos^2x=4(sin^2x-sin^4x)sin^2x和sin^4x积分是有公式的.但是一般人估计也记不得,所以方法二:为了方
∫(1/sin²xcos²x)dx=∫(sin2x+cos2x/sin²xcos²x)dx=∫(1/sin²x+1/cos²x)dx=-co
∫arctan(1/x)dx=∫(x)'arctan(1/x)dx=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx=xarctan(1/x)+∫1/(x+1/x)d
∫xcos(x^2)dx=∫cos(x^2)(xdx)=∫cos(x^2)(d(x^2)/2)=(1/2)∫cos(x^2)d(x^2)=(1/2)sin(x^2)+C
1/[(sinx)^3(cosx)^3]=[sinx/(cosx)^3]+(2/sinxcosx)+[cosx/(sinx)^3]∫(1/sin³xcos³x)dx=[(1/2)/
∫sin^2xcos^3xdx=∫sin^2x(1-sin^2x)dsinx=∫sin^2x-sin^4xdx=(1/3)sin^3x-(1/5)sin^5x+C不是让你求助我吗.再问:∫sin^2x