求z=f(xy,y)的二阶连续偏导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:37:40
求z=f(xy,y)的二阶连续偏导数
求函数z=f(x^2y,xy^2)的二阶偏导数∂^2z/∂x^2 其中f具有二阶连续偏导数

求函数z=f(x²y,xy²)的二阶偏导数∂²z/∂x²其中f具有二阶连续偏导数,还有∂²z/∂y&#

设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

设F(x,y,z)=0,且F具有二阶连续偏导数,求z对x的二阶偏导数

(偏导数的符号用a代替了)两边对x求偏导数:Fx+Fz*az/ax=0az/ax=-Fx/Fz两边对x求偏导数:a^2z/ax^2=-(FxxFz+FxzFz*az/ax-Fx(Fzx+Fzz*az/

设z=f(x^2+y^2,xy),其中f具有一阶连续偏导数,求z的偏导数

令u=x^2+y^2,v=xy得∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂

设z=f(xy,y/x),其中f具有二阶连续偏导数,求a^2z/ax^2,a^2z/axay.

先求一阶导数,由于f有两个分量,要先对f的两个分量求导,再根据复合函数求导,两个分量对x求导,也就是z对x的一阶导数是:f1*y-f2*y/x^2,接下来再让这个式子对x求导,注意,这里利用乘法的导数

高数偏导题.设z=f(x+y,x-y,xy),其中f具有二阶连续偏导数,求dz与∂²z/ͦ

09年考研题.dz就是对x和y的偏导的和.dz=(f'1+f'2+yf'3)dx+(f'1-f'2+xf'3)dy∂²z/∂x∂y就是对x求导,在对y求导

设z=f(2x-y)+g(x,xy),其中函数f二阶可导,g具有二阶连续偏导数,求a^2z/axay (a就是那个偏导符

dz/dx(用d表示偏导符号)=f'(2x-y)*2+g'1(x,xy)*1+g'2(x,xy)*y=2f'(2x-y)+g'1(x,xy)+y*g'2(x,xy)=2f'(2x-y)+g'1+yg'

设z=f(xy,x+y),且f有连续的二阶偏导数,求a^2z/axay

令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=

z=f(sinx,xy),其中f具有二阶连续偏导数,求ε^2z/εxεy

求d^2z/dxdy先求dz/dx,或者dz/dydz/dx=f1*cosx+f2*y(注意f1,f2意思是分别对sinx,xy求导,而且也同样都是关于sinx,xy的函数:f1(sinx,xy),f

设函数z=f(sinx,xy),其中 具有二阶连续偏导数,求ε^2z/εxεy

设u=sinx,v=xydz/dx=dz/du*du/dx+dz/dv*dv/dx=cosxf1'+yf2'd^2z/dxdy=d(dz/dx)/dy=(-sinx)f1'+cosx*df1'/dx+

设函数z=f(xy,y/x)具有二阶连续偏导数,求 a^2z/axay

设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1

设Z=f(x+y+z,xyz),f具有二阶连续偏导数,求∂z/∂x.

f后面的1与2是下标.∂z/∂x=f1'+yzf2'

z=f(x,2x+y,xy),f有一阶连续偏导数,求dz

再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:

设z=x^3 f(xy,y/x),其中f具有二阶连续偏导数,求az/ax.

设u=xy,v=y/x,则z=x³f(u,v),au/ax=y,av/ax=-y/x²故az/ax=3x²f(u,v)+x³f'u(u,v)(au/ax)+x&

已知z=f(e-xy,x/y)其中f具有二阶连续偏导数,求az/ax

先等会,十分钟再问:嗯嗯,谢谢再答:你确定括号里面是e-xy?再问:是e^(-xy)再答:哦再问:再答:图片发不过去再答:我告诉你怎么做吧再问:啊?QQ邮箱再问:可以吗再问:嗯嗯再问:62630868

Z=f(x+y,xy)其中f具有二阶连续偏导性,求二阶偏导数?

再问:你写这些我都明白,可我不明白这个是怎么计算来的?你就帮我把这个计算过程还有方法详细列下。再答:我很好奇你居然都明白,还问这怎么回事!我真搞不懂你到底明白在哪了?我不说的很详细吗?这是复合函数求导