求sinx在0到π绕x轴旋转所得的曲面面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:12:54
求sinx在0到π绕x轴旋转所得的曲面面积
求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕y轴旋转一周所得的旋转体的体积

你还是说绕哪个轴旋转的体积怎么算?如果是绕Y轴旋转,你可以先画出图形,是一个中心凹陷、中间凸起、边缘光滑过度的一个东东,它的体积有两种算法:一种是微薄片圆筒法求积,沿半径方向从0积到π,就是你写出来的

求由Y=sinx(0≤x≤π)与X轴所围成图形绕X轴旋转一周而成的立体的体积.

上限:π下限:0V=∫(πsin²x)dx=0.5∫π(1-cos²x)dx=0.5π²

求曲线y=sinx和它在x=pi/2处的切线及直线x=pi所围成图形的面积,并求此图形绕x轴旋转所得旋转体的体积

1,切线:对函数求导有:y′=-cos(x)而-cos(π/2)=-√(1/2)sin(pi/2)=sqrt(1/2)即y-√(1/2)=-√(1/2)[x-π/2]可以得y=-x√(1/2)+π/2

求曲线y=sinx和它在x=p/2处的切线及直线x=p所围成图形的面积,并求此图形绕x轴旋转所得旋转体的体积.

p是π吗?它是长为π,高为1的矩形去掉[0,π]区间内的正弦曲线所围面积,S=1*π-∫[0,π]sinxdx=π-(-cosx)[0,π]=π+(cosπ-cos0)=π+(-1-1)=π-2.V=

求在区间[0,π/2]上曲线y=sinx与直线x=π/2,y=0所围成的图形绕y轴旋转产生的旋转体的体积

所求旋转体的体积可看成是由直线x=π/2,y=1,x轴与y轴共同围成的图形绕y轴旋转产生的旋转体体积V1与由直线y=0,曲线y=sinx与y轴所围成的图形绕y轴旋转产生的旋转体体积V2这两者的差值V1

求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕Ox轴旋转一周所得的旋转体的体积

绕Ox轴旋转所得旋转体的体积公式为:V=∫a到b区间π【f(x)】2dx因此,旋转一周所得体积为:V=∫0到π区间π(sinx)2dx=π2/2

求曲线y=sinx从x=0到x=pi一段和x轴围成的图形绕x轴旋转所形成的旋转体的体积

所求体积=∫πsin²xdx=(π/2)∫[1-cos(2x)]dx=(π/2)[x-sin(2x)/2]│=(π/2)(π-0)=π²/2

求曲线y=sinx在[0,π]上的曲边梯形绕x轴旋转一周所形成的旋转体的体积.

设旋转体的体积为V,则v=∫π0πsin2xdx=π∫π01−cos2x2dx=π2[π−∫π0cos2xdx]=π22−π2•2∫π0cosxd(2x)=π22−π•sin2x.π0.故旋转体的体积

求曲线y=sinx与直线y=0及x=π/2所围图形绕x=y^2轴旋转一周所成立体的体积

(1)x=y^2的轴就是x轴,所以题目是曲线y=sinx与直线y=0及x=π/2所围图形绕x轴旋转一周所成立体的体积.(2)见图片:

求y=sinx(0≤x≤派)与x轴所围成图形绕x轴旋转一周后所得到立体的体积.

图形是半圆,最高点是1,所以半径为1.用公式4/3pir^3,得到答案4/3pi.再问:能写出解答过程麽,亲,这是考试题,我要求过程~~~~(>_

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

求y=sinx,x∈【0,π】与y=0围成的区域绕y=1旋转所成的体积

平移得到新的y=ƒ(x)=sinx-1体积V[欲求]=V[1]-V[2]V[1]为[0,π]长,半径为1的圆柱体体积.V[2]为ƒ(x)=sinx-1与y=0所围在[0,π]绕y=

求在区间[0,π/2]上曲线y=sinx与直线x=π/2,y=0所围成的图形绕y轴旋转产生的旋转体的拜托各位了 3Q

所求旋转体的体积可看成是由直线x=π/2,y=1,x轴与y轴共同围成的图形绕y轴旋转产生的旋转体体积V1与由直线y=0,曲线y=sinx与y轴所围成的图形绕y轴旋转产生的旋转体体积V2这两者的差值V1

求由曲线y=sinx与x轴所围成图形绕y轴旋转所得体积,0=<x

绕y轴旋转所得体积=∫2π*x*sinxdx=2π∫x*sinxdx=2π[(-x*cosx)│+∫cosxdx](应用分部积分法)=2π[π+(sinx)│]=2π(π+0)=2π²

y=sinx,0≤x≤π绕x轴旋转所得旋转曲面的面积和体积

先求所得旋转体的体积.在X轴上距离原点x处取一微元dx.y=sinx在x到x+dx之间与x轴之间形成一矩形条,将该矩形条绕x轴旋转得旋转体在x到x+dx之间的体积元素,即一个圆柱体,体积=∫π(sin

y=sinx,0≤x≤π绕x轴旋转所得旋转曲面的面积

提示令1+cosx=tdt=-sinx*dx原式=-k(根号下t)*dt(k是代表前面那一堆,因为不好打所以用k代替)这样就好求了得到:-k(1+cosx)的二分之三次方+c然后把0和π代入作差求绝对

求由函数y=sinx,y=cosx,x轴上的线段【0,π/2】所围图形绕X轴旋转所成的旋转体体积?求详细解答过程

求由函数y=sinx,y=cosx,x轴上的线段【0,π/2】所围图形绕X轴旋转所成的旋转体体积?V=[0,π/4)π∫sin²xdx+[π/4,π/2]π∫cos²xdx=[0,