求F(x)=1 x按(x 1)的幂展开的带拉格朗日余项的n阶泰勒公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:50:35
求F(x)=1 x按(x 1)的幂展开的带拉格朗日余项的n阶泰勒公式
已知正实数X1,X2 及函数f(X)满足4的x次=1+f(X)/1-f(X).且f(X1)+f(X2)=1 求f(x1+

根据第一个条件可以求得f(x)=(4^x-1)/(4^x+1)(4^x表示4的x次方)代入第二个条件,f(x1)+f(x2)=1,整理出来一个包含(4^x1+4^x2)和4^(x1+x2)的一个等式.

已知x1,x2为R+,4^X=(1+f(x)\=(1-f(x))且f(x1)+f(x2)=1求f(X1+x2)的min

^x=[1+f(x)]/[1-f(x)]---->f(x)=[1-4^x]/[1+4^x]设a=4^(x1),b=4^(x2),显然a>0,b>0.f(x1)+f(x2)=(1-a)/(1+a)+(1

对于函数f(x)定义域中任意的x1、x2(x1≠x2),有如下结论:(1)f(x1+x2)=f(x1)+f(x2);

1.kx2.lnx3、x4.x^2再问:为什么第四个函数是x^2?再答:第四个只要找到一个凸函数就行。。。。。像碗一样的弧线的图形

已知函数f(x)=x乘以e的-x次方.(1)如果x1不等于x2且f(x1)=f(x2),证明x1+x2大于2

可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图

函数f(x)=-(x-1)^2(x=1)满足对任意x1不等于x2,都有(f(x1)-f(x2))/x1-x2>0,求a取

条件即为当x1>x2时,f(x1)>f(x2)此为增函数,当x=1,需有f(1)=3+3a>=0-->a>=-1(3-a)x+4a为增函数需有:3-a>0-->a

设函数f(x)={2的-x次方(x1).求满足f(x)=1/4的x的值

当x<1时2^-x=1/4=2^(-2)即-x=-2,x=2与x<1矛盾当x>1时log4(x)=1/4=log4(4^1/4)即x=4^(1/4)=2^(1/2)=√2故x=√2

设函数f(x)=当x1时有log4为底x的对数 求f(x)=1\4的x的值

若x1.,则log4(x)=1/4,所以x=4^(1/4)=√2,符合条件所以x=√2

求f(X)=1-2a^x-a^2x(a>1)的单调性 令x1>x2 然后f(x1)-f(X2) =2(a^x2-a^x1

后面那个a^2x2-a^2x1可以因式分解后面你应该知道怎么做了吧再问:怎样因式分解?再答:你不知道?哦,已经有人回答你了再问:你真幽默,初中早忘了。没有啊?再答:...好吧,要不要我告诉你,我就直接

已知定义在(0,+∞)上的函数f(x1/x2)=f(x1)-f(x2),仅当x>1时,f(x)<0,(1)求

1)令y=-x则f(x)+f(-x)=f(0)令x=y=0则f(0)+f(0)=f(0)所以f(0)=0即f(x)+f(-x)=0所以f(x)是奇函数2)设x1>x2则x1-x2>0则f(

已知函数f(x)=a+x x1在x=1处连续,试求a的值

f(x)=a+xx1在x=1处连续左极限x→1-Limf(x)=a+1右极限x→1+Limf(x)=0在x=1处的值f(x=1)=a+1以上三者相等:a=-1

f(x1+x2)=f(x1)f(x2),f’(0)=2,求f(x)和f’(x)

由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧

对于函数f(x)的定义域中任意的x1,x2(x1≠x2),有如下结论(1)f(x1+x2)=f(x1)*f(x2) (2

证明:(1).不成立.f(x1+x2)=lg(x1+x2)≠lg(x1x2)(2).成立.f(x1x2)=lg(x1x2)=lg(x1)+lg(x2)=f(x1)+f(x2)(3).成立.∵f(x)是

设X的概率密度为f(x)={1x1,-1小于等于X小于等于1 0,其他 求 X的分布函数F(X);

F(x)=0,x再问:还是这道题第二问P{x<0.5}P{X>-0.5}再答:p{x-0.5}=1-F(-0.5)=1-[-(-0.5)^2/2+1/2]=5/8再问:能不能告诉我你的电话我7号要考试

设函数f(x)=e^x/x^2+k,k>0,1求f(x)的单调性 2,设函数f(x)有两个极值点x1,x2,x1

1、f'(x)=[e^x*(x^2+k)-e^x*2x]/(x^2+k)^2=e^x*(x^2-2x+k)/(x^2+k)^2当k≥1时,x^2-2x+k=(x-1)^2+(k-1)≥0,故f(x)在

例如f(x)={x,x1 求f(3.5)=?

例1的意思就是说,若x1,就把X用X-1替换,重复以上步骤.比如说你的3.5>1,于是再把X=2.5代进去,2.5还>1,于是再代1.5进去,1.5>1,再代0.5进去,0.5小于等于1,于是f(3.

已知正实数x1,x2及函数f[x]满足4^x=1+f[x]/1-f[x],且f[x1]+f[x2]=1.求f[x1+x2

解出f(x)=[4^x-1/4^x+1]求导的其导数=1+{2*4^x*(以4为底e的对数)/(4^x+1)^2}恒大于零则其在R上递增f[x1]+f[x2]=1可化简为4^(x1+x2)=3+(4^

求极值的已知正实数X1,X2,及函数f(x)满足 4^x = (1+f(x)) / (1-f(x)) ,且 f(x1)

由4^x=(1+f(x))/(1-f(x))可得f(x)=[4^x-1]/[4^x+1],再由f(x1)+f(x2)=1,带入化简得:4^(x1+x2)-3=4^x1+4^x2,此时利用基本不等式a^

定义域关于原点对称的函数f(x)满足f(x1-x2)=[f(x1)-f(x2)]/[1+f(x1)f(x2)],判断f(

令x1=x2,f(0)=0,再令x1=0,f(-x2)=-f(x2),由定义域关于原点对称所以为奇函数.

函数f(x)=1-|x+1|,对于区间A上的任意X1X2,不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,求区

∵对于区间A上的任意x1,x2,不等式(x1-x2)[f(x1)-f(x2)]>0恒成立∴x1≠x2,[f(x1)-f(x2)]/(x1-x2)>0∴f(x1)-f(x2)和x1-x2的符号相同∴函数