求3x 2y的二重积分,其中D是由梁坐标轴及直线x y=2所围成的有界闭区域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:38:45
用直线x=1将区域分成D1与D2两部分,然后分别积分即可(如图)最后计算需要用分部积分法求出原函数,然后用微积分基本定理即牛顿-莱布尼茨公式求解
注意到积分区域,1-x^2-y^2大于等于零. 利用极坐标可得 再问:我不知道你怎么想的啊,说明白点撒。再答:积分区域内,1-x^2-y^2大于等于零。所以绝对值没有用。还是...
被积函数f(x,y)呢?如果认定被积函数f(x,y)=1,那么二重积分所表示的几何意义就是:以圆(x-1)²+y²=1为底,高度为1的圆柱体的体积.因为积分区域D:x²+
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
I=∫∫xsin(y/x)dxdy=∫x^2dx∫sin(y/x)d(y/x)=(1-cos1)∫x^2dx=(1-cos1)/3.再问:这个公式我们没学过阿,只学过x型或者y型的,或者极坐标下的。我
用极坐标的方法来求:∫∫(R^2-x²-y²)dxdy=∫(-π)(π)dθ∫0(R){(R^2-p^2)p}dp==∫(-π)(π){[R^2p^2/2-p^4/4]0(R)}d
代入x=-1,y=1,2x^y-(5xy^-3x^y)-x^=2*(-1)^*1-{5*(-1)*1^-3*(-1)^*1}-(-1)^=2-(-5-3)-1=9备注:2^表示2的平方
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
二重积分∫(0)(1)x²∫(0)(x)ydydx=∫(0)(1)x²*1/2(x²-0)dx=1/2∫(0)(1)x^4dx=1/2*1/5*x^5l(0)(1)=1/
∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2
{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)
第一道应该先求dx,而后在dy即可第二道同上!
令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限
=∫(2,0)∫(2x,x)x^2+3y^2dydx=∫(2,0)8x^3dx=32
∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2
交点为(0,0)和(1,1).先对x积分后对y积分,积分区域是0