求1 (4-3z),在z.=1 i处的泰勒级数展开式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:34:25
设z=a+bi因为3z+(z-2)i=2z-(1+z)i所以3(a+bi)+(a+bi-2)i=2(a+bi)-(1+a+bi)i3a+3bi+ai-b-2i=2a+2bi-i-ai+b(3a-b)+
(1-z)/(1+z)=(-1+i)/(3+i)(1-z)(3+i)=(-1+i)(1+z)3+i-3z-zi=-1-z+i+zi2z+2zi=42z(1+i)=4z=2/(1+i)=2(1-i)/(
1、z=a+bi,a,b是实数则|z|=√(a²+b²)所以a+√(a²+b²)+bi=4-2i所以a+√(a²+b²)=4,b=-2a+√
z=1+√3i 代数法如下图: 几何法:由复数的几何意义可知,z表示的点与点(-1,-√3)关于原点对称则,z表示的点为(1,√3)所以,z=1+√3i
|Z|=1+3i-Z设z=x+yi|z|=√(x^2+y^2)|Z|=1+3i-Z,√(x^2+y^2)=(1-x)+(3-y)i∴√(x^2+y^2)=1-x,且3-y=0∴y=3√(x^2+9)=
再问:BOCΪʲô����60�ȣ������������Dz�����60����再答:�ǵ�,���������õ���һ��,���һ�������30��.再问:额。。。你写了个boc=30度,
设z=a+bi,z绝对值=2|z|=√(a^2+b^2)=2,a^2+b^2=4.(1)z+3i=a+bi+3i=a+(b+3)iz+3i绝对值=1√a^2+(b+3)^2=1a^2+(b+3)^2=
设z=a+bi.则(a+bi)(1-i)+(a+bi)/2i=3/2+i/2a+b+(b-a)i-ai/2+b/2=3/2+i/2(a+3b/2)+(b-3a/2)i=3/2+i/2∴a+3b/2=3
z=3+3i,或z=-2-2i.
z=a+biz-=a-bi所以(a+bi)(1-i)+(a-bi)/2i=3/2+i/2乘22a-2ai+2bi+2b-ai-b=3+i2a+b-3+(2b-3a-1)i=0所以2a+b-3=03a-
z*z-3i*z=1+3i化简(z+1)(z-1-3i)=0所以z=-1或z=1+3i
设z=a+bi.F(-z)=|1-z|+z=√[(1-a)²+(-b)²]+a+bi=10-3ib=-3.√[(1-a)²+3²]+a=10.解得:a=5.z=
设z=a+bi代入得a+bi-√(a^2+b^2)=-1+i比较两边得a-√(a^2+b^2)=-1b=1代入得a-√(a^2+1)=-1-√(a^2+1)=-1-a平方得a^2+1=a^2+2a+1
|z+2i|+|z-i|=3,z的几何意义就表示z到点A(0,-2)、B(0,1)的距离之和等于3,由于|AB|=3,故z就在线段AB上,考虑|z+1+3i|=|z-(-1-3i)|,其几何意义就表示
(3+4i)*(3-4i)i=25i(3-4i)i=3i+4|(3i+4)/5|=1z=(3i+4)/5
设z=a+bi(a,b∈R),而|z|=1+3i-z,即a2+b2−1−3i+a+bi=0,则a2+b2+a−1=0b−3=0,解得a=−4b=3,z=-4+3i,∴(1+i)2(3+4i)2z=(1
Z=4/5+3/5i或Z=-4/5-3/5i
注意|z+3-4i|=2表示的是z+3-4i的模等于2它不是绝对值解题如下:设z=a+bi则|z+3-4i|=|a+3+(b-4)i|=根号下(a+3)的平方加上(b-4)的平方所以(a+3)的平方加
|Z|=1+3i-Z|Z|+Z=1+3i因为lZl是实数所以设Z=x+3i所以√(x^2+3^2)+x=1即x^2+9=(1-x)^2得x=-4所以Z=-4+3i