求 y=((X 1)^1 2)^2反函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:00:06
求 y=((X 1)^1 2)^2反函数
已知:x1,x2是关于x的方程x^-kx+k-1=0的两个实数根,求y=(x1-2x2)(2x1-x2)的最小值.

由题意,y=(x1-2x2)(2x1-x2)=2x1²-x1x2-4x1x2+2x2²=2(x1+x2)²-9x1x2因为x1,x2是x²-kx+k-1=0的实

设随机变量X1和X2相互独立,且都服从正态分布N(0,1/2),令Y=X1-X2,求E|Y|

Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²

反三角求反函数y=派/4+arctan(2x-1)求反函数

y-π/4=ractan(2x-1)tan(y-π/4)=2x-1x=1/2[tan(y-π/4)+1]=1/2tan(y-π/4)+1/2∴反函数y=1/2tan(x-π/4)+1/2再问:不该考虑

已知曲线参数方程,x=2cosa y=4cosa p是上一点.p(x1,y1) 求(x1+y1,x1-y1)的轨迹.

x1=2cosay1=4sina设那点是Q则A(2cosa+4sina,2cosa-4sina)x=2cosa+4sinay=2cosa-4sina所以x+y=4cosax-y=8sinasin&su

若X1,X2是关于X的方程X平方减2X加M减3等于0,求Y=X1+X2的最小值?

用维达定理(X2)+(X1)=(-a分之b)=(-1分之-2)=2(X1)*(X2)=(a分之c)=(-1分之m-3)所以(X2)+(X1)最小是2

已知x1和x1是方程2x2-2x-5=0的两个实数根,求代数式x1^3+3X1^2+0.5X1+6X2

已知x1是方程的解,则2x1²-2x1-5=0===>x1²-x1=5/2=2.5又,x1,x2是方程的两个解,则:x1+x2=1,x1x2=-5/2x1³+3x1

如何求反三角函数的反函数?如:求函数y = pai+arctanx/2的反函数

反三角函数的反函数就是三角函数,但有一点要注意,再反过来的三角函数的定义域就不是(-∞,+∞)了,而是半个周期.

求抛物线方程顶点式,y=a(x-x1)(x-x2)化简后得y=a(x^2-x(x1+x2)+x1x2)

这就是韦达定理对一元二次方程ax²+bx+c=0的两根为x1x2,则x1+x2=-a/bx1x2=a/c令y=a(x-x1)(x-x2)=0得x=x1x=x2即图像与x轴的交点也就是a(x-

过抛物线y^2=-2x焦点的直线交抛物线于A(x1,y1),B(x0,y0)且x1+x2=6,求|AB|

焦点坐标(-1/2,0)y=k(x+1/2)y^2=-2xk^2x^2+(k+2)x+k^2/4=0x1+x2=(k+2)/k^2=6k=5/6k=-2/3

已知x1 x2是关于x的方程x² -kx+k-1=0的两个实数根.求y=(x1=2x2)(2x1-x2)的最小

解,根据方程实数根的性质,可以得到,x1+x2=(-b/a)=kx1×x2=(c/a)=k-1有因为x1,x2分别为方程x²-kx+k-1=0的两个实数根,所以,x1²-kx1+k

已知双曲线y=3/x和直线y=kx+2相交于点A(X1,Y1)和点B(X2,Y2),且X1*X1+X2*X2=10,求k

y=3/x,y=kx+2(kx+2)x=3kx^2+2x-3=0x1+x2=-2/k,x1x2=-3/kX1*X1+X2*X2=10(x1+x2)^2-2x1x2=104/k^2+6/k=105k^2

设方程组{y=x^2—2x+3 y=x+2的解为{x=x1 y=y1,{x=x2 y=y2求√[(x1—x2)^2+(y

y1=x1+2,y2=x2+2,(y1-y2)=(x1-x2)√[(x1—x2)^2+(y1—y2)^2]=√2|x1-x2|连立代入有:x^2-2x+3=x+2x^2-3x+1=0|x1-x2|=√

抛物线y=x2上两点A(x1.y1)B(x2,y2)关于直线y=x+m对称,且x1*x2=-1/2,求m

A,B在抛物线y=2x^2上则y1=2x1^2y2=2x2^2A(x1,2x1^2)B(x2,2x2^2)AB关于直线y=x+m对称则直线AB与直线y=x+m垂直斜率乘积为-1即[(2x2^2-2x1

求函数y=x1/2(x的二分之一次方)的极限.

这个有以下三种结果:此函数在其取值区间是个递增函数.1、如果x取值趋近于0,则极限是0;2、如果x取值趋近于+∞,则极限是无穷大,即没有极限;3、如果指定取值区间,如(a,b)并指定趋近方向是b方向,

在x^2+y^2=4的点(x1,y1)(x1>0,y1>0),在2x-6+y=0上的点(x2,y2)求|x1-x2|+|

首先考虑固定一点(x1,y1),求(x2,y2)使|x1-x2|+|y1-y2|最小.代入y2=6-2x2得|x1-x2|+|y1-6+2x2|=|x1-x2|+2|(y1/2-3)+x2|≥|x1-