e^-根号x敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:00:46
1、原式=∫e^xdx/[(e^x)^2+1]=∫d(e^x)/[1+(e^x)^2]=arctan(e^x)+C.2、设x=sect,dx=sect*tantdt,tant=√(x^2-1),1/x
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
incompletegammafunction
作代换t=√x,则dx=2tdt原式=∫[2te^t]dt=∫2tde^t=2te^t-∫2e^tdt=2te^t-2e^t=2[(√x)-1]e^√x
令√(1+e^x)=m则x=ln(m^2-1)上式=∫dln(m^2-1)/m=∫2/(m^2-1)dm=ln|(m-1)/(m+1)|+C=ln|(√(1+e^x)-1)/(√(1+e^x)+1)|
t=(e^x+1)^0.5dx=2t/(t^2-1)∫(e^x+1)^0.5dx=∫2t^2/(t^2-1)dt=∫2+2/(t^2-1)dt=2t+ln[(t-1)/(t+1)]+c
/>设根号(e^x-1)=tt^2+1=e^xx=ln(t^2+1)代入得∫tdln(t^2+1)=∫2t^2/(t^2+1)dt=2*∫t^2/(t^2+1)dt=2*∫(t^2+1-1)/(t^2
lim∞>ln(1+e^x)/根号(1+x^2)罗比达法则lim∞>ln(1+e^x)/根号(1+x^2)=lim∞>[e^x/(1+e^x)])/[x/√(1+x^2)]=lim∞>[√(1+x^2
设t=e^根号(x+1)则x=(lnt)^2-1dx=(2lntdt)/t∫(e^根号(x+1))dx=∫t*(2lntdt)/t=∫2lntdt=2∫lntdt=2tlnt-t+C=2e^根号(x+
∫e^√xdx令u=√x,x=u^2,dx=2udu原式=2∫u*e^udu=2∫ud(e^u)=2(u*e^u-∫e^udu),分部积分法=2u*e^u-2*e^u+C=2e^u*(u-1)+C=2
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
∫(x*e^x)/√(e^x+1)dxLetψ=√(e^x+1)=>x=ln(ψ²-1)=>dx=2ψ/(ψ²-1)dψ=∫[ln(ψ²-1)*(ψ²-1)/ψ
分母应该是√(1-e^2x)吧令e^x=t,x=lnt,dx=1/tdt∫e^x/√(1-e^2x)dx=∫t/√(1-t²)•1/tdt=∫1/√(1-t²)dt=a
=∫1/√(5+e^x)de^x=2√(5+e^x)+C
1.令t=(1+e^x)^1/2x=㏑(t^2-1).dx=2t/(t^2-1)dt.∫dx/(1+e^x)^1/2=∫[2/(t^2-1)]dt=∫[(1+t+1-t)/(t^2-1)]dt=ln|
答:∫(1/√x)e^(√x)dx=2∫(1/2√x)*e^(√x)dx=2∫e^(√x)d(√x)=2e^(√x)+C
∫e^(x/2)dx=2e^(x/2)+c
把平方展开之后:二次根号下〔e^2x+e^-2x-2)加二次根号下〔e^2x+e^-2x+2〕=二次根号下(e^x-e^-x)^2加二次根号下(e^x+e^-x)=|e^x-e^-x|+|e^x+e^
∫(1/根号x*e^3根号x)dx=2∫e^(3√x)d√x=2/3e^(3√x)+C
这是求不定积分还是定积分?积分区间呢?∫√e^x/√(e^x+e^-x)dx=∫√e^x/√[1+e^(2x)]/√e^xdx=∫d(e^x)/√[1+e^(2x)]令e^x=tanθ,d(e^x)=