正方形中考中证明线段的垂直且相等
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:54:30
1.∵四边形的对角线垂直且相等∴四边形为正方形又连接四边中点∴连接的四边形四边相等(中位线定理,对角线相等)又对角线互相垂直∴连接的四边形一角为90度∴此四边形为正方形2.不知是题错了还是我不会知道了
说实话,这个题目没有图是不能做的,但我在网络上帮你找了一个应该是一样的题目,1.取BC中点G,连接FG,EG,则有FG‖PB,EG‖AB,由正方形各边长以及PA的长很容易求出AC=2√2,PC=2√3
连结AC,则F是正方形ABCD对角线的交点,E、F分别为PC、BD的中点,则EF是△APC的中位线,EF‖AP,AP∈平面APC,∴EF‖平面APD.平面PAD与底面ABCD垂直,四边形ABNCD是正
①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中
先证明:△abe和△cbe全等(sas)很好证所以∠eab=∠ecb因为ab平行cd所以∠eab=∠dfa=∠gfc(对顶角)因为∠dcb=90所以∠ecb+∠ecd=90因为∠ech=90所以∠fc
如图所示:分别过E、M作BC、AB的垂线交于E1、M1,则因MM1=EE1,∠NMM1=∠FEE1,故△MM1N≌EE1F.于是有,EF=MN.证毕.(抱歉,所画图考不上,而且字母的下标也都不承认!)
延长BC AC延AD方向平移与 原C点与E点重合 原A点与D点重合∵AC⊥BD AC‖DE∴DE‖BD∵四边形ABCD中 AD平行于BC A
(1)如图,在三角形ABC中,∠BAC=90度,AB=AC,BD⊥DE,CE⊥DE且DE过点A.求证:DE=BD+CE∠BAD+∠ABD=∠BAD+∠CAE=90度,所以∠ABD=∠CAE,又∠D=∠
第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A
下面是我自己想的,不知道能不能做对,你自己再看看哈:延长AE到点C,交GF于点P则AC为正方形对角线又因为E为ACBD交点所以点E为HC中点所以BG=GC又因为角EFC=角C=角EGC=90度所以角G
od与oboa与oc第二个ac与bcac与beac与cedc与bcdc与cedc与be
图呢?都没看到图,怎么找?再问:http://wenku.baidu.com/view/e3c31ee881c758f5f61f671d.html不好复制,谢谢,作业急再答:⑴EF//ABGF//BC
因为三角形ABC是直角三角形,CD⊥AB,则可得三角形ABC与三角形CBD相似,则:BC:AB=DB:BC,则BC2=AB×DB,又因为ABFJ是正方形,所以AB=BF,BF×DB=BC2=62=36
因为OD垂直并平分AB,所以AD=AB/2因为OE垂直并平分AC,所以AE=AC/2AB=AC,所以AD=AE所以ADOE是正方形.(题目中ABCD写错了)
可以啊,这就是三垂线定理啊.不过,现在课本上已经删除了,你必须要先证线面垂直.然后根据线面垂直的性质得出两条直线垂直.
BD与AC
题目打漏EF⊥PB.设PD=DC=1.则PC=√2.∠PCB=90º(三垂线),∴PB=√3PF=PE×PC/PB=1/√3,∵PD/PF=√3=PB/PD,∴⊿PFD∽⊿PDB∠PFD=∠
第一个:矩形对角线相互平分一条对角线和两条矩形组成的三角形的高(另一条对角线的一半)是这个三角形的高、中线(等腰三角形才有的特点)固三角形两边相等下面的就不说了自己改知道了.第二个:第二个不是梯形就可
这里引用楼上的图.AG与ID夹角=A1GB与ID夹角=A1-π/2BJ与ID夹角=A1-π/2-3π/4+A3+π/4=A1+A2-πJC与ID夹角=A1+A2-π-π/2=A1+A2+π/2A=(0