正方形中考中证明线段的垂直且相等

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:54:30
正方形中考中证明线段的垂直且相等
1.证明:如果四边形两条对角线垂直且相等,那么依次连接它的四边中点得到一个正方形.

1.∵四边形的对角线垂直且相等∴四边形为正方形又连接四边中点∴连接的四边形四边相等(中位线定理,对角线相等)又对角线互相垂直∴连接的四边形一角为90度∴此四边形为正方形2.不知是题错了还是我不会知道了

PA垂直平面ABCD,ABCD为正方形,∠PAD=90度,且PA=AD,E.F分别是线段PA.CD的中点.求异面直线EF

说实话,这个题目没有图是不能做的,但我在网络上帮你找了一个应该是一样的题目,1.取BC中点G,连接FG,EG,则有FG‖PB,EG‖AB,由正方形各边长以及PA的长很容易求出AC=2√2,PC=2√3

几何证明题,如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD垂直底面ABCD,且PA=PD=2分

连结AC,则F是正方形ABCD对角线的交点,E、F分别为PC、BD的中点,则EF是△APC的中位线,EF‖AP,AP∈平面APC,∴EF‖平面APD.平面PAD与底面ABCD垂直,四边形ABNCD是正

下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两

①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中

已知正方形ABCD中,直线AG分别交BD,CD于点E,F,交BC的延长线于点G,点H是线段是FG上的点,且HC垂直于CE

先证明:△abe和△cbe全等(sas)很好证所以∠eab=∠ecb因为ab平行cd所以∠eab=∠dfa=∠gfc(对顶角)因为∠dcb=90所以∠ecb+∠ecd=90因为∠ech=90所以∠fc

如图,正方形ABCD中,EF,MN,分别是两组对边所截得的线段,求证;若EF垂直MN,则EF等于MN

如图所示:分别过E、M作BC、AB的垂线交于E1、M1,则因MM1=EE1,∠NMM1=∠FEE1,故△MM1N≌EE1F.于是有,EF=MN.证毕.(抱歉,所画图考不上,而且字母的下标也都不承认!)

如图,在四边形ABCD中,AD平行于BC,AC=BD,且AC垂直于BD,画出线段AC平移后的线段,

延长BC AC延AD方向平移与 原C点与E点重合 原A点与D点重合∵AC⊥BD AC‖DE∴DE‖BD∵四边形ABCD中 AD平行于BC A

三角形证明题在正方形ABCD中,m是ab中点,e是ab的延长线上一点,mn垂直于DM于点M,且交角CBE的平分线与点n.

(1)如图,在三角形ABC中,∠BAC=90度,AB=AC,BD⊥DE,CE⊥DE且DE过点A.求证:DE=BD+CE∠BAD+∠ABD=∠BAD+∠CAE=90度,所以∠ABD=∠CAE,又∠D=∠

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

如图,在正方形ABCD中,E为对角线BD上一点.EF垂直DC,EG垂直BC,判断AE,GF的关系并加以证明

下面是我自己想的,不知道能不能做对,你自己再看看哈:延长AE到点C,交GF于点P则AC为正方形对角线又因为E为ACBD交点所以点E为HC中点所以BG=GC又因为角EFC=角C=角EGC=90度所以角G

找出图中互相垂直的线段

od与oboa与oc第二个ac与bcac与beac与cedc与bcdc与cedc与be

1、 如图,在这个正方形网络中,⑴找出相互平行的线段; ⑵找出与DE相互垂直的线段; ⑶这个八边形的八个

图呢?都没看到图,怎么找?再问:http://wenku.baidu.com/view/e3c31ee881c758f5f61f671d.html不好复制,谢谢,作业急再答:⑴EF//ABGF//BC

如图,在直角三角形ABC中,BC=6,四边形ABFJ、BCHG均为正方形,线段CE垂直于线段FJ.求长方形DBFE的面积

因为三角形ABC是直角三角形,CD⊥AB,则可得三角形ABC与三角形CBD相似,则:BC:AB=DB:BC,则BC2=AB×DB,又因为ABFJ是正方形,所以AB=BF,BF×DB=BC2=62=36

在圆O中 AB、AC为互相垂直且相等的两条弦,OD垂直AB于D,OE垂直AC于E,求证四边形是ABCD正方形

因为OD垂直并平分AB,所以AD=AB/2因为OE垂直并平分AC,所以AE=AC/2AB=AC,所以AD=AE所以ADOE是正方形.(题目中ABCD写错了)

我想问问各位,证两条异面线段垂直时,可否证明其中一条线段在一个平面内的射影与另一条线段垂直,就可以证明这两条线段垂直?

可以啊,这就是三垂线定理啊.不过,现在课本上已经删除了,你必须要先证线面垂直.然后根据线面垂直的性质得出两条直线垂直.

在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD垂直底面ABCD,PD=DC,E是PC的中点 证明:PB垂直平面E

题目打漏EF⊥PB.设PD=DC=1.则PC=√2.∠PCB=90º(三垂线),∴PB=√3PF=PE×PC/PB=1/√3,∵PD/PF=√3=PB/PD,∴⊿PFD∽⊿PDB∠PFD=∠

证明:对角线互相垂直的矩形是正方形 证明:对角线垂直且相等的四边形是正方形 证明:四条边都相等的四边形

第一个:矩形对角线相互平分一条对角线和两条矩形组成的三角形的高(另一条对角线的一半)是这个三角形的高、中线(等腰三角形才有的特点)固三角形两边相等下面的就不说了自己改知道了.第二个:第二个不是梯形就可

已知任意四边形ABCD,分别以各边作四个正方形,O,P,Q,R分别为四个正方形的对角线交点求证:线段RQ垂直且等于 线段

这里引用楼上的图.AG与ID夹角=A1GB与ID夹角=A1-π/2BJ与ID夹角=A1-π/2-3π/4+A3+π/4=A1+A2-πJC与ID夹角=A1+A2-π-π/2=A1+A2+π/2A=(0