正方形abcd中e为bc上一点p为cd上一点be加df等于ef求角eaf

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:58:00
正方形abcd中e为bc上一点p为cd上一点be加df等于ef求角eaf
如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.

(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE;(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠E

如图,在正方形ABCD中,F为DC中点,E为BC上一点,且EC=1/4BC,证明∠AFE=90°

连接AE因为ABCD为正方形,设AB=BC=CD=DA=a,又EC=1/4BC,F为DC中点,所以有BE=3/4a,CE=1/4a,CF=DF=1/2a由勾股定理,知AF平方=DF平方+AD平方=5/

如图,在正方形ABCD中,E为CD的中点,F为BC上的一点,且CF=1/4BC,试说明:AE垂直EF

因为在正方形ABCD中,E为CD中点,所以DE=EC=1/2AD因为CF=1/4BC,且BC=AD,所以CF=1/2CE因为角D=角C=90度所以直角三角形ADE相似于直角三角形ECF所以角DAE=角

已知,如图,正方形abcd中,E为BC上一点,AF平分

是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA

如图,正方形ABCD中,E为BC上一点,AF平分∠DAE,求证:BE+DF=AE

在CB延长线上截取BG=DF,连接AGBG=DF,再问:

解一题数学平面几何题如图所示,正方形ABCD中,E为AB上一点,F为BC上一点,若AE+CF=EF,求∠EDF的度数.

延长BC至M,使CM=AE,连接DM△ADE≌△CDM∠ADE=∠CDM∠ADE+∠EDC=90°∠EDC+∠CDM=90°∠EDM=90°DE=DMEF=AE+CF=FM△DEF≌△DFM∠EDF=

如图,在正方形ABCD中,E为ab的中点,f为bc上的一点,且bf=4分之一bc,求证:de垂直ef

证明:∵ABCD是正方形∴AD=AB=BC,∠A=∠B=90º∵AE=BE=½ABBF=¼BC∴AE/AD=BF/BE=½又∵∠EBF=∠DAE=90º

如图,在正方形ABCD中,E为AB上一点,F为BC上一点,且AE+CF=EF 求证:∠EDF=45°

楼上的做法显然是错误的,因为要证明全等要还差一个条件,根本证不出来.而且有个条件“AE+CF=EF”是一定有用的.证明:延长BA到G,使AG=CF,连接DG.易证:△ADG≌△CDF∴∠1=∠2,CF

在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=1/4BC,求证AF⊥EF

连接AE设EC=1则BC=AD=AB=4,BE=3F为中点,则DF=CF=2EF²=CE²+CF²=5(BC⊥CD)AF²=AD²+DF²=

正方形ABCD中,F为DC中点,E为BC上一点,且EC=1/4BC,求证:∠EFA=90°

找到BC边中点H,连接DH因为EC=1/4BC,所以E为HC中点,又因为F为DC中点,所以边FE为△DHC的中位线,所以EF平行于DH.因为正方形ABCD,所以AD=DC,∠ADC=∠DCH=90°又

已知正方形ABCD中,E是BC上一点,DE=2,CE=1,则正方形ABCD的面积为(  )

如图,∵在直角△DCE中,DE=2,CE=1,∠C=90°,∴由勾股定理,得CD=DE2-CE2=22-12=3,∴正方形ABCD的面积为:CD•CD=3.故选:B.

如图在正方形ABCD中,F为CD的中点,E为BC上的一点,且EC=四分之一BC 求证∠AFE=90°

只要证明三角形ECF相似于三角形FDA就行了我记得是不是有个定理,对应边成比例,对应角相等的三角形就是相似三角形啊!因为EC=1/4BC,BC=CD=AD,DF=1/2CD所以,EC/FD=CF/AD

已知:如图,正方形ABCD中,E为BC上一点,AF平分

(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9

如图,在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=1/4BC,那么AF垂直EF.

CE=1/4*BCBE=3/4*BCAF^2=AD^2+DF^2=AD^2+1/4*CD^2=5/4*AD^2EF^2=EC^2+FC^2=1/16*BC^2+1/4*DC^2=5/16*AD^2AC

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=1/4BC.求证:AE⊥EF.

连接AF设AB=AD=BC=CD=4∴E为CD的中点DE=CE=1/2CD=2∵CF=1/4BC=1∴BF=3∴勾股定理:AE²=AD²+DE²=4²+2

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=?BC,试说明AE⊥EF.

在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=(1/4)BC,试说明AE⊥EF.因为,在△ADE和△ECF中,∠ADE=90°=∠ECF,AD/DE=2=EC/CF,所以,△ADE∽△E

已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F

将AF顺时针旋转90º到AG位置,如图.连接BG.AB是AD顺时针旋转90º的位置.所以ΔABG是ΔADF顺时针旋转90º得到的三角形.于是,BG=DF,∠5=∠1,∠A

正方形ABCD中,E为DC上一点,F为BC上一点,∠EAF始终为45°.

楼上那位的语言有问题做法也不太对延长FB到G,使BG=DE,连接AG,在△ADE和△ABG中AD=AB∠ADE-∠ABG=90°DE=BG∴△ADE≌△ABG(SAS)∴AE=AG(全等三角形的对应边

如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC.求AF垂直EF.

为了计算简单,设正方形边长为4a,则CF=DF=2a,CE=a,BE=3a∴AF^2=AD^2+DF^2=(4a)^2+(2a)^2=20a^2EF^2=CE^2+CF^2=a^2+(2a)^2=5a

正方形abcd中,f为dc的中点,e为bc上一点,且ce=4/1bc求角afe是直角

2ce=df,2cf=ad,d=c=90°,三角形adf相似于三角形fce,角daf=cfe,角daf与afd互余,角afe=90°