正方形ABCD中,∠EAF=45°,求证:DF BE=EF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:28:18
证明:作AG⊥EF于G,将△ADF旋转至△ABF',(见图)显然△ADF≌△ABF',∵∠EAF=45,∴∠BAE+∠DAF=45∴∠F'AE=∠EAF=45,又AF=AF'AE公共边∴△AEF≌△A
证明:将△ADF绕点A旋转,使AD与AB重合,旋转后点F的对应点为G∵正方形ABCD∴∠BAD=90∵△ADF绕点A旋转至△ABG∴△ABG≌△ADF∴AG=AF,∠BAG=∠DAF∵∠EAF=45∴
证明:在CB的延长线上取点G,使BG=DF,连接AG∵正方形ABCD∴AB=AD,∠D=∠ABG=∠BAD=90∴∠BAE+∠DAF=∠BAD-∠EAF∵∠EAF=45∴∠BAE+∠DAF=45∵BG
延长FD至H,使DH=BE,连接AH在△ABE与△ADE中AB=AD∠ABE=∠ADHBE=DH∴△ABE全等于△ADH(SAS)∴∠BAE=∠DAH,AH=AE∵∠EAF=45°∴∠FAH=∠BAE
图都错了再答:咋告诉你呀再问:哪里错再答:题说点E在CD上,但图画得是在BC上再答:发之前请看清楚题目再答:行吧你可能有近视没看清楚再问:点B和点D的位置反了再问:请解答再问:在吗再答:.再答:等十分
延长EB到G,使BG=DF.∵正方形ABCD中,AD=AB,∠BAD=∠D=∠ABE=∠ABG=90º∴⊿AGB≌AFD∴AG=AF又∵∠GAE=∠GAB+∠BAE=∠DAF+∠BAE=90
延长AF交BC延长线于G,F是CD的中点,DF=FC,∠GCF=∠ADF=RT∠,∠DFA=∠CFG,△CFG≌△AFD,AD=CG=DC,又AE=DC+CE=CG+CE=GE,∠EGF=∠EAF,又
⑴ 把⊿ABE绕A逆时针旋转90º,到达⊿ADG, FG=FD+BE=FE AE=AG AF=AF&n
证明:延长CD到M,使DM=BE,连接AM,∵四边形ABCD是正方形,∴AD=AB,∠B=∠BAD=∠ADC=∠ADM=90°,∵在△ABE和△ADM中,AB=AD∠B=∠ADMBE=DM∴△ABE≌
证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB-∠E
试证明S△AEF=S△ABE=S△ADF.打错! 应该是:试证明S△AEF=S△ABE+S△ADF.把⊿ABE绕A逆时针旋转90°,到达⊿ADG.∠FAG=∠FAD+∠DAG=∠FAD+∠B
证明:在CD的延长线上取点G,使DG=BE,连接AG∵正方形ABCD∴AB=AD,∠BAD=∠ABC=∠ADG=90∵DG=BE∴△ABE≌△ADG(SAS)∴AG=AE,∠DAG=∠BAE∵∠EAF
证明:(1)延长CB到G,使GB=DF,连接AG(如图)∵AB=AD,∠ABG=∠D=90°,GB=DF,∴△ABG≌△ADF(SAS),∴∠3=∠2,AG=AF,∵∠BAD=90°,∠EAF=45°
初三现在没学四点共圆,现改用三角形全等方法.题目中图1没给,可自己画一个∠EAF在∠BAD内,显然∠BAE和∠CEF是锐角,不可互补只能相等.题目(1)没问题.(1)连结AC,由菱形性质易知∠B=∠A
将△ADF顺时针旋转90°到△ABG由AG=AF、AE=AE、∠GAE=∠GAB+∠BAE=45°=∠EAF得△AGE≌△AFE(即图中蓝、黄两个三角形全等)即GE=FE,面积S△AGE=S△AFE=
证明:延长EB至I,使得BI=DF.联结AI.那么,在⊿ABI和⊿ADF中,IE=DF,∠IBA=∠FDA,BA=DA,所以⊿ABI≌⊿ADF.故AI=AF,∠DAF=∠BAI;由此易知∠IAE=45
2可以设《BAE为x,则《DAF=45-x所以BE=AB*tanx;得出三角形BAE面积含x的表达式同理三角形ADF同样得含x表达式同样CEF.最后你会发现三角形ADF面积+ABE面积+CEF=定值2
楼上那位的语言有问题做法也不太对延长FB到G,使BG=DE,连接AG,在△ADE和△ABG中AD=AB∠ADE-∠ABG=90°DE=BG∴△ADE≌△ABG(SAS)∴AE=AG(全等三角形的对应边
将三角形AFD旋转到正方形外
延长CB到E′,使BE′=DE.在△ADE和△ABE′中,BE′=DE∠ADE=∠ABE′AD=AB所以△ADE≌△ABE′(SAS)所以AE=AE′,∠EAD=∠E′AB.所以∠E′AB+∠BAF=