正方形ABCD中,D为BD上一点,PM垂直BC于M,PN垂直DC于N
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:01:14
1.因为正方形ABCD,所以三角形ABD与BCD全等,所以AE=CE2.若△CEF是等腰三角形,则CE=EF,所以过E的垂线EG为CF的中垂线,垂足为G即G为CF中点,又因为F为BC中点,所以BG=B
题目成了平面几何问题,根据答案,F是C1G的中点,这样才是立体几何问题,CG=CD/4=1/4,作FH⊥CD,连结EH,则FH是△C1CG的中位线,FH=CC1/2=1/2,在△EGC中,
连结CP在正方形ABCD中,BD是对角线∴AB=BC,∠ABP=∠CBP=45°,∠C=90°∵BP=BP∴⊿ABP≌⊿CBP(SAS)∴AP=CP∵PE⊥DC于E,PF⊥BC于F∴∠C=∠PFC=∠
⑴PB+PC最小=DE=√(AE^2+AD^2)=√5⑵PA+PC最小=AC‘=2√3.⑶作P关于OB的对称点P‘,关于OA的对称点P’‘,连接P’P‘’交OA、OB于Q、R,根据对称性得:OP‘=O
EF=BF,EG=DG,四边形efcg的周长=EF+FC+CG+EG=BF+FC+CG+DG=BC+CD=正方形ABCD的周长的一半=30/2=15再问:为什么EF等于EG再答:EF=BF,没说EF=
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
如图,折叠后的图形为三棱锥A-BCD,且平面ABD⊥平面BCD,取BD的中点E,连接AE,CE,∵AB=AD=2,∴AE⊥BD.同理,CE⊥BD,∴∠AEC=90°,∴EA=EB=EC=ED=2,即E
2、证明:将△ABE绕点A旋转,使AB与AD重合,旋转后点E的对应点为I,过点H作HP⊥BC于P,HQ⊥AB于Q,过点G作GK⊥CD交DC延长线于K∵正方形ABCD∴AD=AB=CD,∠BAD=∠AD
以左上顶点为A,顺时针方向分别为B、C、D作图.添加一条辅助线:连结EC.证明:在正方形ABCD中,AD=CD,∠ADE=∠CDE=45°,DE=DE,所以三角形ADE全等于三角形CDE(边角边定理)
(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=C
EF=AP.理由:∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,连接PC,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,
下面是我自己想的,不知道能不能做对,你自己再看看哈:延长AE到点C,交GF于点P则AC为正方形对角线又因为E为ACBD交点所以点E为HC中点所以BG=GC又因为角EFC=角C=角EGC=90度所以角G
①⊿BEP等腰直角,AEPF为矩形,∴BE=EP=AF.又OA=OB.∠OAF=∠OBE=45º∴⊿OAF≌⊿OBE(SAS),∴OF=OE.∠FOA=∠EOP②∠FOE=∠FOA+∠AOE
在直角△BDC中,BC=DC,BD=2,由勾股定理得:BC=√2,过点P作BC的垂线,垂足为E,得等腰直角△BPE,那么PE=(√2/2)x,所以S△PBC=1/2BC*PE=1/2*√2*√2/2*
(1)∵四边形ABCD是正方形,BD是对角线,且MN∥AB,∴四边形ABNM和四边形MNCD都是矩形,△NEB和△MDE都是等腰直角三角形.∴∠AEF=∠ENF=90°,MN=BC=AB,EN=BN∴
解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略
解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证
证明:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+
设AO=a,则a2=12.阴影部分的面积为:π a2−1=12π−1=12×3.14-1=0.57.答:图中阴影部分的面积为0.57.故答案为:0.57.