正方形ABCD,E为对角线BD上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:51:11
1.因为正方形ABCD,所以三角形ABD与BCD全等,所以AE=CE2.若△CEF是等腰三角形,则CE=EF,所以过E的垂线EG为CF的中垂线,垂足为G即G为CF中点,又因为F为BC中点,所以BG=B
连cp可用全等证明cp=apcp又=ef所以ap=ef再问:CP为什么等于EF再答:pecf是矩形,对角线相等再问:终于明白了
证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=12∠ABC,在△ABP和△CBP中,AB=CB∠ABP=∠CBPBP=BP,∴△ABP≌△CBP(SAS);(2)∵△ABP≌
证明:连接PC.∵四边形ABCD是正方形∴AD=CD又∵BD是正方形ABCD的对角线∴∠ADB=∠CDB=90°在△ADP与△CDP中AD=CD{∠ADB=∠CDBPD=PD∴△ADP≌△CDP(SA
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
四边形ABCD是正方形,AB=AD=2,BE=BD=√AB²+AD²=√8=2√2,过B作BF垂直a于F,因,角ABD=45度,a//BD,所以,角FAB=角FBA=角ABD=45
(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=C
(1)在Rt△FCD中,∵G为DF的中点,∴CG=1/2FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E
EF=AP.理由:∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,连接PC,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,
下面是我自己想的,不知道能不能做对,你自己再看看哈:延长AE到点C,交GF于点P则AC为正方形对角线又因为E为ACBD交点所以点E为HC中点所以BG=GC又因为角EFC=角C=角EGC=90度所以角G
(1)连接PC,因为两边和一个夹角均相等,所以三角形APD与CPD全等.AP=PC=10而PE垂直DC,PF垂直BC,PF=EC=8(勾股定理).(2)不管P在哪里,都满足AP^2=PE^2+PF^2
这个我初三也做过,很简单再问:可现在我初二再答:用不用我帮你算再问:好的
解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略
解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证
很简单.过P作PM,PN垂直AB,AD,证明PF=BF=PMPE=ED=PNSAS全等得证再问:能不能详细点?我不是很懂再答:
32划两条对角线,分正方形为4个等腰直角三角形.可拼成2个边长为4的正方形.大正方形的面积=2*4*4=32
由题意画出图形,如图,设正方形的边长为:2,折叠前后AD=2,DE=1,连接AC交BD于O,连接OE,则OE=1,AO=2,因为正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,AO⊥BD,所
PC=PE证明:连PA,DA=DC DP=DP ∠ADP=∠CDP=45°∴△ADP≅△CDP &
延长CG到H,使CG=HG连结HE,HF,EC,设HF的延长线交BC于I∵FG = GD,∠HGF = ∠CGD,HG = GC∴△HFG&
证明:(1)连AC,AP,AD=CD∠ADP=∠CDP=45°DP=DP⇒△ADP≅△CDP⇒PA=PC⇒∠PAC=∠PCAEA=PE⇒∠E