椭圆离心率为2分之根3,过右焦点f与 长轴垂直的直线被椭圆截得弦长为2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:12:49
椭圆离心率为2分之根3,过右焦点f与 长轴垂直的直线被椭圆截得弦长为2
已知椭圆离心率为根号6/3,过右焦点F且斜率为1的直线交椭圆于AB两点,对任意椭圆一点M,证明存在角x,

不妨设a=3,c=√6,则b^2=3,椭圆方程为x^2/9+y^2/3=1,右焦点F(√6,0),AB:y=x-√6,代入上式得x^2+3(x^2-2x√6+6)=9,4x^2-6x√6+9=0,x1

椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A

做椭圆右准线,从A、B分别做准线的垂线AM、BN,垂足M、N,做BD⊥AM,垂足D,根据椭圆第二定义,e=|AF|/|AM|,e=|BF|/BN|,|AF|/|BF|=|AM|/BN|=3,|AM|=

已知椭圆 上的点到椭圆右焦点 的最大距离为 ,离心率 ,直线 过点 与椭圆 交于 两点.

条件没有,帮不了你再问:已完善。再答:(1)a+c=√3+1,e=c/a=√3/3联立得a=√3,c=1b²=a²-c²,b=√2,自己代入原方程即可(2)当L斜率不存在

已知椭圆C:x^2/a^2+y^2/b^2=1的离心率为√6/3,过右焦点F且斜率为1的直线交椭圆C

kon=-1/3因过程非常麻烦,请看图片请及时点击右下角的【好评】按钮

设椭圆中心在坐标原点,焦点在X轴上,一个顶点(2,0),离心率为根号3/2,若椭圆左焦点为F1,右焦点为F2,过F1且斜

首先易求得a=2,b=1,c=根号3,椭圆方程;x^2/4+y^2=1F1(-根号3,0),直线;y=x+根号3,代进椭圆方程(消掉x)即,5y^2-2根号3y-1=0解得Y1,Y2△ABF2的面积=

椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率为2分之根号3,过右焦点

由于e=√3/2,所以不妨设a=2,c=√3,于是椭圆方程变为x²/4+y²=1……①这是一个定比分点弦的问题,设直线方程为x=√3+t,y=kt,与椭圆方程①联立,并整理,得到(

已知椭圆X^2/a^2+y^2/b^2=1(a>b>0)的离心率e=1/2,且过P(1,3/2),F为其右焦点 设过A点

(1)将P(1,3/2)代入椭圆方程:1/a²+9/(4·4b²)=1→1/a²+9/4b²=1∵c/a=1/2,∴(1/4)a^2=c^2∴1/a^2+9/4

已知焦点在x轴上的椭圆C过点(0,1)离心率为√3/2,M为椭圆C的右顶点,求椭圆C标准方程

设所求方程是:x^2/a^2+y^2/b^2=1,(a>b>0),根据题意:b=1,c/a=√3/2,因为b^2=a^2-c^2,所以:1=a^2-c^2,即:a^2=1+c^2,由c/a=√3/2得

已知椭圆中心在原点,坐标轴为对称轴,过右焦点作平行于y轴的直线交椭圆于M,N两点,若|MN|=3,椭圆离心率方程2x^2

2x²-5x+2=0的根是x=2或x=1/2因为2>1舍去,离心率e=c/a=1/2,即a=2c,右焦点横坐标=c,x²/a²+y²/b²=1和直线x

已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率=√6/3,过右焦点的直线斜率为一,交椭圆于AB两点

∵e=c/a=√6/3,∴c^2/a^2=6/9=2/3,∴(a^2-b^2)/a^2=2/3,∴1-b^2/a^2=2/3,∴b^2/a^2=1/3,∴a^2=3b^2.∴c^2/a^2=c^2/(

已知椭圆中心在原点,离心率为2分之根号3,F为左焦点,A为右顶点,B为短轴一顶点,求cos角ABF.

x²/a²+y²/b²=1(a>b>0)离心率为e=c/a=√3/2,c=√3/2a∴b²=a²-c²=1/4a²∴a=

椭圆C 的离心率为1/2 以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+根号6=0相切 过椭圆右焦点的直线与椭

依题求得b=√3.a=2.c=1那么直线表示为:y=k(x-1)①椭圆:3x^2+4y^2=12②或者3y^2+4x^2=12⑦①②联立得到:(3+4k^2)x^2-8k^2x+4k^2-12=0x1

已知椭圆x^2/a^2 + y^2 /b^2=1(a>b>0)的离心率为6^(1/2)/3,一条准线方程为x=3,过右焦

把向量OM那个式子化成只有sin的等式.根据椭圆的第二定义可知准线和离心率的关系可求出a,b,c.于是有椭圆的焦点.而斜率又是知道的,可以用点斜式得出L的方程.然后根据a,b,c的值就可以证明了(重点

已知椭圆x^2/a^+y^2/b^=1的离心率为3分之根号6,短轴的一个端点到右焦点的距离为根号3,直线L与椭圆交于AB

e=√6/3=c/a短轴端点到右焦点的距离是√(b^2+c^2)=a=√3所以c=√2b=1那么椭圆为x^2/3+y^2=1要求AOB面积最大,也就是|AB|的最大值AB斜率不存在时为x=√3/2,|

已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,长轴长为4,M为右顶点,过右焦点F的直线与椭圆

直线AM、BM分别交于P、Q两点,谁和直线AMBM相交?题目没抄错吧再问:题目补充了下你在看下再答:(1)长轴长2a=4,a=2离心率e=c/a=1/2,c=1b=√3椭圆方程为:x²/4+