椭圆x2 25 y2 m=1的焦点在x轴上,且焦距与长轴之比为1:2,则m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:13:39
F2(1,0)设椭圆方程为x²/a²+y²/b²=1(a>b>0).左焦点为F1(-1,0)则c=1,PF1=5/2,PF2=3/2.所以PF1+PF2=4.即
你首先要画出图这样就简单一大半了,设椭圆左焦点为F1右焦点为F2则三角形ABC的周长就等于三角形BF1F2的周长加三角形CF1F2的周长则根据椭圆方程得知2a=4∴三角形ABC的周长=4+4=8哪里不
应该是两倍长轴长即4aa=√3故周长4√3
1)设椭圆方程为x^2/a^2+y^2/b^2=1,直线AB:y=x-c,联立消去y可得:(a^2+b^2)x^2-2a^2cx+a^2c^2-a^2b^2=0,令A=(x1,y1),B=(x2,y2
(1)设方程为x2/a2+y2/b2=1,因为焦点在x轴上,一个顶点A(0,-1),所以b=1,右焦点F2(c,0)到直线x-y+2根号2=0的距离为3,则有|c-0+2√2|/√2=3,解得c=√2
设长半轴长度为a,短半轴长度为b,若椭圆中心在原点,且以x轴,y轴为对称轴,则焦点坐标为(0,正负根号下(a方-b方))或(正负根号下(a方-b方),0)焦点和长轴端点在一条轴上若椭圆中心不在原点,或
设椭圆方程标准方程为:(x²/a²)+(y²/b²)=1(a>b>0)已知2c=2,所以c=1则,a²=b²+1即,x²/(b
设椭圆方程为x²/a²+y²/b²=1(a>b>0),依题意知e=c/a=1/2,故a=2c,b=√3c,椭圆方程可写为x²/(4c²)+y
显然所有椭圆中长轴最短的椭圆应该与直线L相切椭圆的焦点为(-3,0),(3,0),可设其标准方程为x^2/A+y^2/(A-9)=1即(A-9)x^2+Ay^2=A^2-9A,把y=x+9带入:(A-
1、先设椭圆的标准方程,F2的坐标设为(a,0)2、把(1,2/3),(a,0)代入椭圆标准方程,(a,0)代入抛物线.3、两个方程联立.4、求出a,b,得出椭圆方程.这儿说明一下,因为椭圆的中心在原
(1)设椭圆的右焦点为(a,0)则有椭圆焦点到直线距离D=丨2√2+x丨/√2=3解得:x=√2∴右焦点(√2,0)又顶点A(0,-1)∴c^2=2b^2=1推导出a^2=2+1=3∴椭圆方程为x^2
你好~这是一道基础题~考察椭圆的定义:到2焦点为定值2a(2a>|F1F2|)的点的集合.三角形ABC的周长可以分解为2个部分:(设焦点A,F)一个是|AB|+|BF|=2a,另一个是|AC|+|CF
抛物线Y平方=4X的焦点为(1,0)所以在椭圆中,c=1又因为在椭圆中a^2=b^2+c^2所以a^2=b^2+1设椭圆方程为x^2/(b^2+1)+y^2/b^2=1再将点(1,3/2)带入方程,得
1、e=c/a=3/5,又2b=8,则b=4,从而a=5,c=3.椭圆方程是x²/25+y²/16=1;2、椭圆焦点F(±3,0),抛物线焦点与之重合,则p/2=3,p=6,抛物线
e=c/a=√5/5,2b=4,a2-b2=c2,a=√5,b=2,c=1.直线为y=2x-2.y=2x-2,x2/5+y2/4=1,3x2-5x=0,x1+x2=-5/3,x1x2=0,中点为(-5
设椭圆焦点是F1,F2,实际上求的是在直线上找点M,使|F1M|+|F2M|最短,此为初中常见题.不难知F1(-2,0),F2(2,0),F2关于直线的对称点为(4,2),最短值为√[(-2-4)^2
x^2/16+y^2/12=1a^2=16,b^2=12,c=2在l:X+Y-4=0上任意一点MxM=n,yM=4-nM(n,4-n)过M(n,4-n)并且以椭圆x^2/16+y^2/12=1的焦点为
⑴椭圆上的点到焦点的最短距离就是长轴端点到对应焦点的长度.由其等于1-e可知a=1e=c/ac=√2/2b^2=a^2-c^2b^2=1/2椭圆方程为2X^2+Y^2=1⑵设A(X1,Y1)B(X2,
/>给你个公式吧.设PF1=m,PF2=n那么m+n=2a2S=mnsinA而根据余弦定理:cosA=(m^2+n^2-4c^2)/2mn=[(m+n)^2-4c^2-2mn]/2mn=(2b^2/m