D由x^2 y^=2x组成的平面区域,则二重积分dxdy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:09:46
均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0
先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,
楼主所说的 Vx = π∫(a~b) [f(x)]² dx 确实是计算旋转体积的公
1.画出区域图,可发现x=2.5,y=2.5时,z=2x+y的最大值为7.52.离心率为1/2,a^2:b^2=4:3,代入双曲线x²/a²-y²/b²=1,将
∫π(1-x^2)^2dx积分区间[0,1]=π(x+x^5/5-2x^3/3)[0,1]代入积分上下限得到8π/15再问:答案是16pi/15再答:哦..抛物线和x轴围成的形状关于y轴对称,我只算了
V=∫πX^2dy(y=0->1)=∫π(1-y)dy=π/2
x+2y>=0(1)x-3y>=0(2)(1),(2)变形为:y>=-1/2x(3)y
1.S=∫(1,e)lnxdx=[xlnx-x](1到e)=(e*lne-e)-(1*ln1-1)=12.V=∫(1,e)π(lnx)²dx=[x(lnx)^2-2xlnx+2x](1到e)
设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函
x+y=2与y=x的交点P(1,1),(1)薄皮质量M=∫∫u(x,y)dxdy=∫dy∫(x+2y)dx=∫dy[x^2/2+2yx]=∫(2+2y-4y^2)dy=[2y+y^2-4y^3/3]=
把图形分解,从0到1,可以求出三角形面积为1/2从1到2,由定积分,可以解出为ln2-ln1=ln2所以总面积为1/2+ln2.
解法一:所求体积=∫[π(2x-x²)-πx²]dx=2π∫(x-x²)dx=2π(1/2-1/3)=π/3;解法二:所求体积=∫[2πy*y-2πy*(1-√(1-y&
定积分就可以了 面积=ln2 过程如下图:
先作出这个区域,这是一个类似于角的区域,而且这个角的顶点在原点(0,0),正好是圆的圆心,这样的话圆在区域D内的部分就是个扇形,那只要确定出圆心角就可以了,即确定直线x-2y=0与直线x+3y=0的夹
肯定是对的啊.你的平面区域也变换了么?还有dxdy换成dudv/2了么?
可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.
先积y,∫∫(2x-y)dxdy=∫[0→1]dx∫[3-x→2x+3](2x-y)dy=∫[0→1][2xy-(1/2)y²]|[3-x→2x+3]dx=∫[0→1][2x(2x+3)-(
区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12 (x,y)∈D0