d是等边三角形abc的边ab上的一动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:51:58
d是等边三角形abc的边ab上的一动点
如图,三角形ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE.

点D在BC中点时,四边形CDEF是平行四边形,且∠DEF=30°证明:∵设点D在BC中点∴AD是△ABC的中线∴AD平分∠BAC又∵△ABC是等边三角形∴∠BAD=∠CAD=1/2∠BAC=30°∵C

如图:已知△ABC是等边三角形 AB=4 D是BC上的一个动点

1)连AD,等边三角形ABC面积=4√3,等边三角形ABC面积=三角形ABD面积+三角形ACD面积=(1/2)AB*DE+(1/2)AC*DF=2DE+2DF=2√3+2DF=4√3,所以DF=√32

如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

如图三角请ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点.

1.因为AD=BE=CF所以AF=DB=CE因为三角形ABC是等边三角形所以角A=角B=角C三角形ADF全等于三角形BDE全等于三角形CEF所以DF=DE=EF所以三角形DEF是等边三角形再问:那等你

如图,已知△ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边△ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

已知:如图,△ABC是等边三角形,点D、E分别在AB、AC上,且BD=CE,△ADE是等边三角形吗?证明你的结论.

因为BD=CE,△ABC为正△所以AB=AC,∠A=60°所以AD=AE,∠A=60°所以△ADE正三角形

如图所示,△ABC是等边三角形,点D、E、F分别是线段AB、CD、CA上的点``````

1、∵△ABC是等边△,∴可设AB=BC=CA=a,∠A=∠B=∠C=60°,设AD=BE=CF=b,则DB=EC=FA=a-b,∴易证△ADF≌△BED≌CFE,∴DF=ED=FE,∴△DEF是等边

D是等边三角形ABC的边AB上一点,AE∥BC,且AE=BD.求证:△CDE是等边三角形

过D作DF//AC,交BC于F,因为三角形ABC是等边三角形.所以,三角形BDF也是等边三角形所以,在三角形AED和三角形FDC中,AE=BD=DF

如图,△ABC为等边三角形,D.F分别是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE

1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A

如图,D是等边三角形ABC的边AB上的一动点,以CD为一边向上做等边三角形EDC,连接AE,求证:ae平行bc

思路:如果AE平行BC,那么角EAC=角BCA=60度只需证明三角形EAC=三角形DBC由边角边定理,BC=AC,DC=EC,角BCD=角ACE=60度-角ACD,得证.再问:能写出过程吗再答:证明:

如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,

(1)△DEF是等边三角形.证明如下:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,(2分)∴△ADF≌△BED≌△CFE,(3分)∴DF=D

已知△ABC是等边三角形,点D,E,F,分别是线段AB,BC,CA上的点,AD=BE=CF,求证:△DEF是等边三角形

答:∵△ABC是等边三角形∴∠A=∠B=∠C∵AD=BE=CF,即AF=CE=BD∴△ADF≌△BED≌△CFE(边角边)∴在△DEF中DE=EF=FD所以△DEF为等边三角形(边边边)

要在边长为2的等边三角形纸片ABC的边AB上找一点D,过点D剪下两个等边三角形纸片,它们的边长分别是AD和DB.要使剪下

因为AD+DB=AB所以AD²+DB²≥(AD+DB)²/2=AB²/2所以当AD=DB时,AD²+DB²有最小值AB²/2当过点

如图,三角形ABC为等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

在△ABC中,AB=AC,边BC的中点为D,作等边三角形DEF,是顶点E、F分别在边AB和AC上.

在ABC中,AB=AC,边BC的中点为D.作一个等边三角形DEF,使顶点E,F分别在边AB和AC上,(1),若∠BDE=∠CDF=60°时,EF与BC平行.理由:AB=AC,则∠B=C,又BD=DC,

如图所示,三角形ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点.

(1)△DEF是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,∴△ADF≌△BED≌△CFE,∴DF=DE=EF,即△DEF

△ABC为等边三角形,D、F分别是BC、AB上的一点,且CD=BF,以AD为边作等边三角形ADE.

(1)证:AC=CB∠ACD=∠CBF=60°CD=BF根据边角边定理.就全等了(2)AD=DE由①问得AD=CF∴FC=DE四边形CDEF为平行四边形且对角线还相等那么CDEF只能是矩形∴△BDF为

等边三角形ABC,D、F是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE,求证:四边形CDEF是平行四边形

因为CD=BF所以,AF=BD∠BAD=∠CAFBA=CA所以,△BAD≌△CAF所以,AD=CF而由等边三角形ADE知:AD=DE所以,DE=CF∠BCF=∠BCA-∠CAF=60-∠CAF=60-