根号下x-3的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:49:29
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
定积分的上下限呢?如果是不定积分,用第二类换元法,x=2√2*sinx,可以变成8∫(cosx)^2dx,再用倍角公式化成4∫cos2x+1dx=2sin2x+4x+C
因为,4x-x^2-3=1-(x-2)^2设x-2=cosθ,θ∈【0,π】,则dx=-sinθdθ,x=0不行,最小取1,θ=π,x=2,θ=0∫[根号下4x-x^2-3]dx=∫sinθ(-sin
根号下(1+x^-4)dx的积分=x-[x^(-3)]/3+c
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
令x=asin(t)就做出来了...答案是-根号下a平方-x平方再问:能详细写下积分过程吗?谢谢。再答:换元积分,微积分里有的~
∫根号(1+1/x^2)dx=∫根号(x^2+1)/xdx令t=根号(x^2+1)x=根号(t^2-1)dx=t/根号(t^2-1)dt=∫t/根号(t^2-1)*t/根号(t^2-1)dt=∫t^2
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
既要换元,又要分部,还涉循环积分.初学者有难度.
∫1/((x+1)^0.5+(x+1)^1.5)dx=∫1/((x+1)^0.5+(x+1)^1.5)d(x+1)=∫1/((x+1)^0.5(1+(x+1))d(x+1)=∫1/((x+1)^0.5
∫(1/3)^√xdx=∫2√x(1/3)^√xd√x=2∫√x(1/ln(1/3))d(1/3)^√x=[2/ln(1/3)]∫√xd(1/3)^(√x)=(-2/ln3)√x*(1/3)^√x+(
其中的∫(secθ)³dθ,请参见下图:其中的∫(secθ)dθ,请参见下图:或:
∫[1-->3]√|x(x-2)|dx=∫[1-->2]√(x(2-x))dx+∫[2-->3]√(x(x-2))dx=∫[1-->2]√(2x-x^2)dx+∫[2-->3]√(x^2-2x)dx=
再问:导数第三步那里我没化回sint的形式直接把x=arcsinx反带可以吗?再答:可以