根号2sinx cosx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:54:50
(1)f(x)=sinxcosx+√3cos²X-√3/2=sin2x/2+√3cos2x/2+√3/2-√3/2=sin(2x+π/3).(2)f(x)的最小正周期为π,值域是[-1,1]
y=√2/2*sin2x+(1+cos2x)/2-1/2=√2/2*sin2x+1/2*cos2x=√3/2*sin(2x+z)其中tanz=(1/2)/(√2/2)=√2/2所以T=2π/2=π
f(x)=2sinxcosx+2√3cos²x-√3=2sinxcosx+√3(2cos²x-1)=sin2x+√3cos2x=2sin(2x+π/3)最小正周期T=2π/2=π,
原式=5/2*sin2x-5√3(1+cos2x)/2+5√3/2=5*(sin2x*1/2-cos2x*√3/2)-5√3/2+5√3/2=5(sin2xcosπ/3-cos2xsinπ/3)=5s
解f(x)=√3cos²x+sinxcosx-√3/2=√3*(1+cos2x)/2+(1/2)sin2x-√3/2=(1/2)sin2x+(√3/2)cos2x=sin(2x+π/3)∴T
f(x)=cos^2x-sin^2x+2(根号3)sinxcosx+1=cos2x+(根号3)sin2x+1=2{(1/2)cos2x+[(根号3)/2]sin2x}+1=2sin(2x+派/6)+1
f(x)=2√3sinxcosx-cos2x=√3sin2x-cos2x=2(sin2x*√3/2-cos2x*1/2)=2sin(2x-π/6)x=π/12;函数f(x)的图象可以由函数y(x)=2
fx=sin2x-根号3*(1+cos2x)+a+根号3=2sin(2x-60°)+aT=pi,增区间[k*pi-pi/6,k*pi+5pi/12],k属于Z 2.由题意得-5pi/6<
(sinX+cosX)平方=2所以sinX平方+cosX平方+2sinXcosX=2因为sinX平方+cosX平方=1所以sinXcosX=0.5
f(x)=sinxcosx+√3(cosx)^2-√3/2=(1/2)sin2x+(√3/2)cos2x=sin2xcosπ/3+cos2xsinπ/3=sin(2x+π/3)1.0
∵√3/2-√3sin²x+sinxcosx=(√3/2)(1-2sin²x)+(1/2)sin2x=sin(π/3)cos2x+cos(π/3)sin2x=sin(2x+π/3)
f(x)=sinxcosx+√3(cosx)^2-√3/2=(1/2)sin2x+(√3/2)cos2x=sin2xcosπ/3+cos2xsinπ/3=sin(2x+π/3)
f(x)=√3cos²x+sinxcosx-√3/2=√3(cos2x+1)/2+sin2x/2-√3/2=√3/2cos2x+√3/2+1/2sin2x-√3/2=1/2sin2x+√3/
cos2x-2根号3sinxcosx=cos2x-根号3(2sinxcosx)运用倍角公式得=cos2x-根号3sin2x运用辅助角公式得=-2sin(2x-六分之π)由ω=2,T=二派除以ω,所以周
1、∵1-cos2x=2sin^2∴f(x)=2sinxsinx+2√3sinxcosx+1=1-cos2x+√3sin2x+1=2+2(√3/2*sin2x-1/2*cos2x)=2(cos(π/6
1、f(x)=2sinxsinx+2√3sinxcosx+1=1-cos2x+√3sin2x+1=2sin(2x-π/6)+2对称轴:2x-π/6=kπ+π/2,得x=kπ/2+π/3对称中心:2x-
解:原式=√3sin2x+cos2x+1=2(√3/2sin2x+1/2cos2x+1=2cos(2x-pai/3)+1.
2cos^2-1=cos2xcos^2=(1+cos2x)/2f(x)=sinxcosx-(根号3)cos^2+(根号3)/2=sin2x/2-根号3*(cos2x+1)/2=sin2x/2-根号3*
原式等于(3sinXcosX+cos²x-sin²x)/(sin²x+cos²x)再同时除以cos²x就行了
不对,因为f(x)=cos2x-2√3sinxcosx=cos2x-√3sin2x=2[sinπ/6cos2x-cosπ/6sin2x]=2sin(π/6-2x)左移5π/12,f(x)=2sin【π