dy dx=10^x y的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:35:35
dy dx=10^x y的通解
求由方程xy=ex+y所确定的隐函数的导数dydx

方程两边求关x的导数ddx(xy)=(y+xdydx);     ddxex+y=ex+y(1+dydx);所以有  (y+xdy

求方程xy′=yln(y/x)的通解

令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnuxu'=u(lnu-1)du/[u(lnu-1)]=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x

dy/dx=2xy的通解是?

分离得到:dy/y=2xdx两边积分:ln|y|=x^2+C1y=±e^c1 *e^x^2  =Ce^x^2 (C =±e^c1) 图片如下

求微分方程y'=(1+y^2)/xy的通解

dy/dx=(1+y^2)/(xy)[y/(1+y^2)]dy=dx/x两边积分得1/2[ln(1+y^2)]+c1=ln|x|+c2,c1,c2为任意常数两边都以e为底数得1+y^2=cx^2,c为

dy/dx=xy的通解

dy=xydx1/ydy=xdxln|y|=x²/2+C∴dy/dx=xy的通解为y=±e^(x²/2+C)e^(x²/2+C)表示±e的(x²/2+C)次方再

微分方程y'=xy+x+y+1的通解是?

dy/dx=xy+x+y+1dy/dx=(x+1)(y+1)分离变量dy/(y+1)=dx*(x+1)两边积分ln(y+1)=(x²/2)+x+lnC两边取以e为底的幂y+1=Ce^[(x&

高数微分方程xy'-yln y=0的通解,

dhy2603,这题太容易了,xy'-ylny=0①,两边再对x求一次导得到y'+xy''-y'lny-yy'/y=0,即有xy''-y'lny=0②,联立两式得,ylny*y''/y'-y'lny=

求方程xy''=y'ln(y'/x)的通解

设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C

求微分方程xy"+y'=0的通解

∵xy"+y'=0==>xdy'/dx+y'=0==>dy'/y'=-dx/x==>ln│y'│=-ln│x│+ln│C1│(C1是积分常数)==>y'=C1/x∴y=∫C1/xdx=C1ln│x│+

高数中关于微分方程的通解问题,求xy'-y=x^2的通解,

解法简单我们知道(y/x)'=(xy'-y)/x^2很容易就可以化简成(y/x)'=1所以解就是(y/x)'=x+C;把x乘过来就是y=x^2+Cx

求微分方程 .dy/dx-3xy=x 的通解.

解法一:∵dy/dx-3xy=x==>dy/dx=x(3y+1)==>dy/(3y+1)=xdx==>ln│3y+1│=3x²/2+ln│3C│(C是积分常数)==>3y+1=3Ce^(3x

求微分方程dy/dx+2xy=0的通解

分离变量经济数学团队为你解答,有不清楚请追问.请及时评价.再问:图片看不见啊再答:我再发一次再答:

(y-1-xy)dx+xdy=0的通解是什么

∵(y-1-xy)dx+xdy=0==>y(1-x)e^(-x)dx+xe^(-x)dy-e^(-x)dx=0(等式两端同乘e^(-x))==>yd(xe^(-x))+xe^(-x)dy+d(e^(-

求微分方程的通解 y"-xy=0

该微分方程只能用级数解法

求微分方程dy/dx=2xy的通解

1/ydy=2xdx两边积分∫1/ydy=∫2xdxln|y|=x^2+C',y=±e^C'e^(x^2)=Ce^(x^2)

求dx/dy-3xy=xy^2的通解

dx/dy-3xy=xy^2dx/x=(y^2+3y)dy两边积分得:lnx=y^3/3+3y^2/2+c==>x=exp(y^3/3+3y^2/2+c)=Cexp(y^3/3+3y^2/2)C常数

微分方程xy'+y=x^2的通解

xy'+y=x^2(xy)'=x^2xy=x^3/3+Cy=x^2/3+C/x

求微分方程xy'-2y=5x的通解,

再问:多谢!!!

微分方程xy"-y'=0的通解是?

答:xy''-y'=0(xy''-y')/x²=0(y'/x)'=0y'/x=2Cy'=2Cxy=Cx²+K再问:为什么第二步要除以X的平方呢?第三步又是怎么得出来的?对不起我很笨