根号1 1 lnx求积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:05:31
用换元法:令u=lnx,x=e^u==>dx=e^udu当x=1,u=0:当x=e,u=1==>∫(0~1)e^u/[e^u*√(1-u²)]du=∫(0~1)du/√(1-u²)
先求不定积分∫lnx/√xdx=2∫lnxd(√x)(分部积分法)=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C再把上下限代入相减即可,这个很简单,因为不好
∫lnx/(x*根号下1+lnx)dx=∫lnx/√(1+lnx)dlnx=∫√(1+lnx)dlnx-∫1/√(1+lnx)dlnx=2/3*(1+lnx)^1.5-2√(1+lnx)+C
∫(e→+∞)1/(x√((lnx)³))dx=∫(e→+∞)(lnx)^(-3/2)d(lnx)=(lnx)^(1-3/2)/(1-3/2)|(e→+∞)=-2/√(lnx)|(e→+∞)
楼上第二题做得太麻烦了,第三题不对.1、∫x²/√(4-x²)dx令x=2sinu,则√(4-x²)=2cosu,dx=2cosudu=∫(4sin²u/2co
∫(1->e^2)dx/(x√(1+lnx))=∫(1->e^2)dlnx/√(1+lnx)=∫(1->e^2)d(lnx+1)/√(lnx+1)=2√(lnx+1)|(1->e^2)=2[√(lne
∫lnx/√xdx=2∫lnxd(√x)分部积分=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮
令x=t^2=>可以化成4lnt(上限为2,下限为1)的定积分,lnt的常数为0不定积分为tlnt-t=>4lnt(上限为2,下限为1)的定积分=4(2ln2-2)-4(1ln1-1)=8ln2-4
使用 分部积分 ... 但LS有错误:∫(lnx)^2dx = x(lnx)^2-∫x(2lnx)dx但即使这样,也做不出来这类有 对数,反
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
解;∫(√1+lnx)/xdx=∫√1+lnxd(1+lnx)=∫√udu=2/3(1+lnx)^(3/2)+C
(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.
网上查一下相关求导法则,然后用牛顿-莱布尼兹公式计算比如f(x)=sinx,f'(x)=cosx;f(x)=cosx,f'(x)=-sinx;f(x)=√x,f'(x)=(√x)/2x
1、令t=lnx则原式=∫lntdt.用分部积分法,取,u=lnt,dv=dt,v=t即可2、取u=e^(2x),dv=sinxdx,v=-cosx.用两次分部积分,然后移项整理即可3、令t=√(x+
用分部积分法,设u=lnx,v'=1,u'=1/x,v=x,原式=x*lnx-∫(1/x)*xdx=xlnx-x+C.
分部积分∫sin(lnx)dx=∫sin(lnx)*(x)'dx=sin(lnx)x-∫(sin(lnx))'*xdx=sin(lnx)*x-∫cos(lnx)dx①继续将∫cos(lnx)dx分部积
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出