DE分别在等边三角形ABC的边BC和AC上,且AE=CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:00:27
证明;:过点E作EF平行AC交BD的延长线于F所以角BAC=角BEF角ACB=\角BFE因为三角形ABC的等边三角形所以AB==BC角B=角BAC=角ACB=60度所以角BEF=角BFE=角B=60度
因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边
ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a
△ABC是等边三角形∴AC=AB,∠BAC=∠C=60º∵DC=AE∴△ADC≌△BEA∴∠CAD=∠ABE∵∠BFD=∠BAF+∠ABE且∠CAD=∠ABE∴∠BFD=∠BAF+∠CAD=
∵△ABC是等边三角形∴∠B=∠BAC=60°,AB=AC∵AE=BD∴△ABD≌△CAE∴∠BAD=∠ACE∴∠CFD=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°
因为ABC是正三角形所以角B=60度因为FD垂直于BC所以角BDF=90度所以角BFD=30度因为EF垂直于AB所以角AFE=90度所以角EFD=60度同理角EDF=60度,角DEF=60度所以三角形
解:因为ABC是正三角形所以角B=60度因为FD垂直于BC所以角BDF=90度所以角BFD=30度因为EF垂直于AB所以角AFE=90度所以角EFD=60度同理角EDF=60度,角DEF=60度所以三
∵△BCF,△ACE,△ABD是等边三角形.∴∠BCF=∠ACE,∠FBC=∠DBA∴∠BCF-∠ACF=∠ACE-∠ACF即∠ACB=∠ECF∠FBC-∠FBA=∠DBA-∠FBA即∠ABC=∠DB
由AE=CD,∠BAE=∠C=60°,AB=CA得△BAE≌△ACD.那么,∠AEB=∠ADC.由外角性质可知∠AEB=∠C+∠CBE=60°+∠CBE.∠ADC=∠BPQ+∠CBE,由以上两式易知,
好久不学数学了 不知道对不对 希望能帮助你
1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,
证明:延长AE至F,使EF=AB,连结DF,∵AE=CD,(已知),EF=AB,AB=AC,∴AC+CD=AE+CF,∴AD=AF,∵△ABC是正△,∴〈A=60度,∴△ADF是含顶角60度的等腰△,
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.
作EF平行于AC交BC于F,那么三角形BEF是正三角形,而且CF=AE=BD,这样三角形EBD全等于三角形EFC,于是CE=DE.
1.设等边三角形ABC的边长为1,DE=x,那么CD=AE=1+x.过点E作BC的平行线交AD于F,那么三角形AEF是等边三角形,所以角DCB=角EFD=120度(1),且EF=AE=1+x,CF=D
/>①∵△ABC是等边三角形∴∠B=∠ACB=60°∵DE//AB∴∠EDF=∠B=60°∵EF⊥DE∴∠DEF=90°∴∠F=90°-∠EDF=30°②∵∠EDC=∠ECD=60°∴△CDE是等边三
证明:因为等边三角形ABC中,D,E分别为AC,BC的中点,所以AE⊥BC,BD⊥AC,∠CBD=30°,BD=AE又因为等边三角形BDF所以BF=BD,∠FBD=60°,∠BDF=60,所以BF=A
(1)猜想:AD=BF=CEBD=AE=CF证明:∵ABC,三角形DEF为等边三角形∴角A=角EDF角A=角BDE=DF∵角A+角AED=角AED∴角AED=角DFB在三角形ADE和三角形BFD中{角