曲面4x² y²-z²=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:59:55
[X,Y]=meshgrid(linspace(-10,10),linspace(-10,10));Z=(X.^2)/(4^2)-(Y.^2)/(5^2);mesh(X,Y,Z)
将z=x^2+y^2作为被积函数V=∫∫x^2+y^2ds积分区域D由x+y=4,x=0,y=0,z=0,确定=∫dy∫x^2+y^2dx(积分上下限:x下限0,上限4-y;y下限0,上限4)=∫2(
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
[r,t]=meshgrid(0:.1:1,pi*(0:.1:2));x=r.*cos(t);y=r.*sin(t);z1=4-r.^2;z2=3*r;mesh(x,y,z1);holdonmesh(
因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配
F(x,y,z)=arctan(y/x)-z∂F/∂x=-y/(x²+y²)∂F/∂y=x/(x²+y²)
很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!
x=-1:.1:1;%x的取值y=-1:.1:1;%y的取值[x,y]=meshgrid(x,y);z=x.*y;surf(x,y,z);
用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3
图为表达式,以下用matlab求解,你可以手算积分!>> clear>> syms x y>> V=int(int
ezmesh('sqrt(4-x^2-y^2)')
画曲面---把曲面方程参数化a1=linspace(0,2*pi,30);b1=linspace(0,pi,30);[a,b]=meshgrid(a1,b1);x=6*cos(a).*sin(b);y
求偏导z'_x=-2xz'_y=-2y令z1=4-x^2-y^2=x^2+y^2=z2可得D:x^2+y^2≤2极坐标下可表示为0≤r≤√2,0≤θ≤2πS=∫∫(D)√(1+4x²+4y&
如果我没算错的话,应该是PI/4,PI就是圆周率∫∫(1-4x^2-y^2)dS,S为区域4x^2+y^2
面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y
方程x^2/4+y^2=z^2,表示什么曲面表示锥面.再问:A.椭球面,B.双曲面,C.锥面,D.双曲线,选哪个?再答:C.锥面,不客气。
1.椭球面.关于原点中心对称.系旋转曲面.由YOZ坐标平面的椭圆(y^2)/9+(z^2)/4=1绕Y轴旋转180度形成;或者由XOY坐标平面的椭圆(x^2)/4+(y^2)/9=1绕Y轴旋转180度
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17
这个是二重积分算出来的啊:积分区域D:x²+y²≤4V=∫∫(4-x²-y²)dxdy=∫【0→2π】dθ∫【0→2】(4-ρ²)ρdρ=2π*(2ρ