曲线y=(x^2) (x^2-1)的渐近线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:42:04
曲线y=4(x+1)²/(x²+2x+4)=4(x+1)²/[(x+1)²+3]=4-12/[(x+1)²+3]可得,当x趋于±∞时,12/[(x+1
【1】zhaoyucai答非所问,涉嫌抄袭.【2】风飘水渺回答正确.【3】但还有更简单的方法:>>ezplot('x^2+y^2=1',[-1.51.5-1.51.5]),axisequal,grid
水平渐近线,即是当x趋于无穷时y的极限值(如果存在的话)这里y=4(x^2+2x+1)/(x^2+2x+4)当x->∞时,y=4所以水平渐近线为y=4再问:这个极限怎么求的再答:lim(x->∞)4(
两条,X=1和Y=1再问:过程的思路是什么呢!再答:你那个方程除了在X=-1处相当于Y=1+1/(x-1),而X=-1是个可去间断点。所以你只要把Y=1+1/(x-1)图像画出来就可以了。这个图像就是
设渐近线方程为y=ax+b.则:a=lim(x→∞){[x+√(x^2-x+1)]/x}=lim(x→∞)[1+√(1-1/x+1/x^2)]=[1+√(1-0+0)]=2.b=lim(x→∞)[x+
原方程等价于x-y-2=0,或在x-y-2>0的条件下x+y-1=0,∴曲线是直线x-y-2=0,和直线x+y-1=0在直线x-y-2=0下方的射线组成的
在原曲线中用y=x+1,x=y-1代入,整理后代入得到(y-1)^2=x+1
已知dy/dx=f'(x)=y/x+x²,则有dy/dx-y/x=x²对应的齐次线性微分方程为dy/dx-y/x=0变形,得dy/y=dx/x两边积分,得Ln丨y丨=Ln丨x丨+c
y=x^3-x^2-x+1y'=3x²-2x-1y''=6x-2=0x=1/3x0x=1/3,y=16/27即拐点为(1/3,16/27)凸区间为(-∞,1/3)凹区间为(1/3,+∞)
设所求曲线上任一点为P(x,y)其对称点为Q(x’,y’),则PQ的中点为M((x+x’)/2,(y+y’)/2),因为对称,所以M在直线X-Y+1=0上,所以[(x+x’)/2]-[(y+y’)/2
原式化为:根号[(x+3)^2+(y-1)^2]=(|x-y+3|/√2)*√2等式中,根号[(x+3)^2+(y-1)^2]表示的是点(x,y)到定点(-3,1)的距离d1;|x-y+3|/√2表示
由曲线y=2x与直线y=x-1联立,解得,x=-1,x=2,故所求图形的面积为S=∫42(x−1−2x)dx=(12x2−x−2lnx)|42=4-2ln2.故答案为:4-2ln2.
求任意曲线关于直线y=kx+b对称的的曲线方程,如果K=1或-1有个超级简单的办法.如y=x+1就吧y=x+1和x=y-1代入原来的方程.得到x+1=-(y-1)²+2(y-1)-2(还没化
水平渐近线:limx→∞e1x2arctanx2+x−1(x+1)(x−2)=limx→∞e1x2limx→∞arctanx2+x−1(x+1)(x−2)=1•arctan1=π4所以有水平渐近线y=
∵limx→∞f(x)x=limx→∞2x−1x•e1x=2 limx→∞[y−2x]=limx→∞[2x(e1x−1)−e1x]=limx→
y*=b0xe^x,y*'=b0(e^x加xe^x),y*''=b0(2e^x加xe^x)代入解得:b0=-2
∵lim(x→∞)(y/x)=lim(x→∞){2(x-2)(x-3)/[x(x-1)]}=2lim(x→∞)[(1-2/x)(1-3/x)/(1-1/x)]=2×[(1-0)(1-0)/(1-0)]
直线x-y=2和直线x+y=1中y≤-0.5中的部分原式等价于(x+y-1)(x-y-2)=0,同时x-y≥2,再分解为【x+y=1同时x-y≥2】和【x+y≠1同时x-y=2】两种形式,解得可得上述
分析:当x趋向1+时,y趋向负无穷大,x趋向1-时,y趋向正无穷大.当x趋向2+时,y趋向正无穷大,x趋向2-时,y趋向负无穷大.当x趋向无穷大时,y趋向0.结论:共有3条渐近线,x=1,x=2,y=
(1)切线方程变形为y=(-1/2)(x-1)+1可见斜率k=-1/2,f(1)=1f'(x)=[a(x+1)/x-alnx]/(x+1)^2-b/x^2已知k=f'(1)=(2a)/4-b=-1/2