曲线L 为y=x^2 上从(0,0)到(1,1)一段弧,则曲线积分 =

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:43:05
曲线L 为y=x^2 上从(0,0)到(1,1)一段弧,则曲线积分 =
计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧

再问:∫AB+∫DA是什么意思呢再答:被积函数在AB,0A直线上积分。被积函数省写了。

计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2

P=-(e^xcosy+y),∂P/∂y=e^xsiny-1Q=e^xsiny+x,∂Q/∂x=e^xsiny+1补线段L1:y=0,x从2到-2则L+

∫ cos(x+y^2)+2y)dx+(2ycos(x+y^2)+3x)dy ,其中L为曲线y=sinx上从x=0到x=

P=cos(x+y^2)+2yQ=2ycos(x+y^2)+3xP'y=-2ysin(x+y^2)+2Q'x=-2ysin(x+y^2)+3添加线段L1:(π,0)到(0,0)注意由L和L1构成的封闭

若曲线y=x+lnx的切线l与2x-y-根号2=0平行,则切线l的方程为?

对y=x+lnx求导,得y'=1+1/x即曲线y=x+lnx在点x处的切线的斜率为:1+1/x.其中,x>0.因为切线l与2x-y-根号2=0平行,所以切线l的斜率与直线2x-y-根号2=0的斜率相等

曲线y^2+z^2-2x=0; z=3 在x0y平面上投影曲线方程为( )

代人z=3则y^2=2x+9=2(x+9/2),即将y^2=2x图像向左平移4.5个单位

设L为沿y=x^2从(0,0)到(π,π^2)的曲线,

设P(x,y)=2xy^3-y^2cosx,Q(x,y)=1-2ysinx+3x^2y^2计算出:Q'x=P'y则积分与路径无关∫L(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^

曲线和方程两题1 已知直线l:2x+4y+3=0,p为直线上l上的动点,o为坐标原点,点Q分op(向量)为1:2的两部分

1.设点Q的坐标为(x,y),∵O为坐标原点,点Q分OP(向量)为1:2的两部分,∴向量OP=3向量OQ=(3x,3y),即点P(3x,3y)代入直线l:2x+4y+3=0得6x+12y+3=0,∴点

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

求第二型曲线积分∫lydx+zdy+xdz,其中l为曲线x=acost,y=asint,z=bt上从t=0到t=2π的一

代入就可以了.=积分(从0到2pi)(asint*(-asint)+bt*(acost)+acost*b)dt=积分(从0到2pi)(abcost+abtcost-a^2sin^2t)dt=2pi*(

计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B

补线L1:y=0.dy=0.逆时针方向,x由-3变到3.封闭区域运用格林公式∮(L+L1)(3y-x²)dx+(7x+√(y⁴+1))dy=∫∫D[∂/∂

曲线积分,设L为折线y=1-|1-x|从点(0,0)到点(2,0)的一段,则线积分∫(x^2+y^2)dx+(x^2-y

格林公式部分=4/3说明你取的闭合曲线正方向,即逆时针方向,辅助线部分=8/3说明你的辅助线y=0取的方向是从x=0到x=2,那么为了使闭合曲线整体上取逆时针方向,折线L就得取(0,2)到(1,1)再

若曲线y=x^2的一条切线l与直线x+4y-8=0垂直,则l的方程为

设切点(x,y)y'=2x所以切线斜率为2x所以2x*(-1/4)=-1x=2y=4K=2x=4l:y-4=4(x-2)y=4x-4

L∫xydx,其中L为y^2=x上,从A(1,-1)到B(1.1)的一般弧,计算第二类曲线积分

y²=x==>y=±√x∫_L(xy)dx=∫_(点A到原点)(xy)dx+∫_(原点到点B)(xy)dx=∫(1~0)x(-√x)dx+∫(0~1)x(√x)dx=∫(0~1)(x√x+x

∫(e^x)cosydx+(y-siny)dy,其中L为曲线y=sinx从(0,0)到(pi,0)的一段弧

补线L₀:y=0、dy=0,取逆时针I(L⁻)+I(L₀)=∮e^x*cosydx+(y-siny)dyI(L⁻)+∫(0→π)e^xdx=∫∫e^x*

计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧

∫(x^2-y^2)dx=∫0~2(x^2-x^4)dx=-56\15如果是∫(x^2-y^2)dL=∫0~2(x^2-x^4)√(1+4x^2)dx这里的区别就是dx和dl,做题目的时候要看清楚呀.