方阵B满足AB B A 2E=0,则|B E|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:58:48
方阵B满足AB B A 2E=0,则|B E|=
线性代数:三阶矩阵A=【1 -1 1】 1 0 2 2 1 t 若3 阶非零方阵B满足AB=0则t=?

1.A不可逆,否则B=0,于是|A|=0,立得t2.双击可看大图

设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

已知方阵A满足aA²+bA+cE=0(a,b,c为常数c≠0),则A的逆是多少

由aA²+bA+cE=0得A(aA+bE)=-cE|A(aA+bE)|=|-cE||A|*|(aA+bE)|=(-c)^n*|E|=(-c)^n(n为方阵的阶数)因c≠0故|A|≠0即A可逆

方阵AB=BA方阵A和方阵B需要满足什么条件?

没有一般的充要条件.只是充分条件的话,貌似有一个是正交阵就可以?

2. 已知3阶方阵A,B满足3A+B=0且|A|=2,则|B|=_____________.

一个数乘行列式等于这个数乘行列式中某一行(列)的每一个元素;一个数乘矩阵等于这个数乘矩阵中每一个元素,也就是乘每一行(列)的每一个元素,3阶方阵A,B满足3A+B=0B=-3A|B|=(-3)^3|A

线性代数 4.n阶方阵A,B满足R(AB)=0,则( )

因为 R(AB)=0所以 AB=0所以 R(A)+R(B)<=n.(C) 正确 搞定请采纳...

已知矩阵A,B满足AB=BA,证明:A,B是同级方阵

设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

设n阶方阵 A B 满足AB=BA ,(A+B)^3=0,且B可逆,证明A 可逆.

由于AB=BA所以(A+B)^3=0可以展开成A(A^2+3AB+3B^2)=-B^3两边取行列式得|A||A^2+3AB+3B^2|=(-a)^n|B|^3由B可逆知右边不是0.所以|A|一定不能为

证明不可能有n阶方阵A,B满足AB-BA=E

要用到若尔当矩阵,你学过没?比较长,我要是打了,你能立即把分给我不?

方阵A,B满足A+B=AB 证明A,B可交换,即AB=BA

A+B=AB,所以(A-E)(B-E)=E,E是单位矩阵所以,A-E与B-E互为逆矩阵,所以,E=(B-E)(A-E)=BA-A-B+E,得BA=A+B所以,AB=BA

已知方阵A满足aA^2 + bA + cE = 0 (a,b,c为常数,且c≠0),则A^(-1) = ?

因为aA^2+bA+cE=0所以A(aA+bE)=-cE所以A[(-1/c)(aA+bE)]=E.所以A可逆,且A^-1=(-1/c)(aA+bE)

设n阶方阵A,B满足A*BA=4BA-2E且|A|=2,|E-2A|≠0,求矩阵B

等式A*BA=4BA-2E两边左乘A,右乘A^-1,得|A|B=4AB-2E.代入|A|=2得B=2AB-E所以(2A-E)B=E因为|E-2A|≠0所以2A-E可逆故B=(2A-E)^-1.

设A,B为n阶方阵,满足关系AB=0,则必有_____

AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0

设A,B是两个N阶方阵,满足条件AB=E,|A|=-5,则|B|=

由题得︱A︱︱B︱=︱E︱=1,∵︱A︱=-5,∴︱B︱=-1/5

已知四阶方阵A满足|A-E|=0,方阵B=A^3-3A^2,满足BB^T=2E,且|B|

已知矩阵M=2321,求矩阵M的特征值与特征向量.考点:特征值与特征向量的计算.专题:计算题.分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的

4.若n 阶方阵 A满足,A^2=0 则下列命题哪一个成立 ( ).

要是取巧,你想A=0是可能的,但也不是唯一的解,所以四个答案只有D正确要是正常解题,因为r(A)+r(B)-n

若n阶方阵A满足,A^2=0,则以下命题哪一个成立?

选D利用Sylvester不等式rank(A)+rank(B)