方差不齐检验方法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:14:37
用lsd前要先做方差齐性检验,不齐的话不能用方差齐性检验在Options---Homogeneityofvariance中,看结果p是否大于0,05是的话可以用lsd分析.当然得先建数据,你只有一组数
如果需要进行方差分析,就要进行方差齐性检验,即若组间方差不齐则不适用方差分析.但可通过对数变换、平方根变换、倒数变换、平方根反正弦变换等方法变换后再进行方差齐性检验,若还不行只能进行非参数检验.
方差齐性检验是方差分析的重要前提,是方差可加性原则应用的一个条件.方差齐性检验是对两样本方差是否相同进行的检验.方差齐性检验和两样本平均数的差异性检验在假设检验的基本思想上是没有什么差异性的.只是所选
one-wayANOVA方差分析项的postHoctest分别有二选项:1.假设方差齐时有一系列的分析方法可选.2.假设方差不齐时又有一系列的分析方法可选.再者,为保证统计准确,如果方差不齐,可以进行
小弟我也是自学的,学艺不精您别见怪:方差不齐也可以看的,方差不齐只是说明两组数据的离散情况不同,如果是来自同一母体可能会有问题,但如果T是远小于0.05,说明还是有显著差异的,你现在要做的是确定这个离
v1和v2表示排列在中间的部分观察值被抽出来分成的两部分的观察值的个数.
独立样本T检验结果中含两种检验:方差齐性(Levene)检验和均值T检验.方差齐不齐是判断用哪一种方式分析两样本的差异性,与两样本有无差异无关.是否具有差异性只要看相对应的T检验的sig.值即可.所以
2.假设方差不齐时又有一系列的分析方法可选.再者,为保证统计准确,如果方差不齐,可以进行对数,倒数或函数的转换,选择适当的转换形式,直到齐性检验变为不显著.如果还不行就只能用非参数的单因素分析.如果非
方差不齐说明你要比较的三组数据至少有一组数据的均值不等于其它两组,这就是结论.
非参数检验一般是用于小样本的,用分析----非参数检验----两个相关样本(或者独立样本)样本大于30的话可以用T检验,有个方差不齐的修正模型
这话的意思似乎应该是:多组数据经方差齐性检验后方差不齐(因此不能使用方差分析),采用K-W非参数检验.结果发现在0.05显著性水平上多组间差异显著.
方差分析由于涉及三组以上,因此比t检验需要有更多的注意问题.目前临床最常见的错误就是关于两两比较方面的.对于三组及以上资料,一般来讲,采用方差分析得到的F值是一个组间的总体比较.例如三组间比较如果有差
数据转换或者采用非参数检验,随机化方法等处理数据.
尝试做一些变换,反正弦变换,倒数变换,平方根变换等.
通过T检验可以做出来的.-X是平均值,大S可能是标准差,t是计算出来的t统计量,p是两组之间的差异显著性.做法如下:1.spss数据输入--建立变量,变量1为“科”,变量2为“自信心”,每个变量为一列
秩转化的方差分析两两比较,snk或者lsd再问:不好意思,能稍具体么,怎么进行秩转化呀...最近毕业论文焦头烂额.....
先做线性回归,然后对残差做怀特检验没有异方差
您第一个等方差检验用的levene检验,所以认为您的数据是非正态的;此检验结果认为不具备方差齐性.ANVOA方差分析要求数据来自正态分布总体,并且因子水平之间的方差大致相等(齐性),所以不应该使用AN
X2的二次项存在异方差,可以用1/X2做加权最小二乘,我试了试可以的,就是输入“lsy/x2cx1/x21/x2”自相关是看最后一行Durbin-Watsonstat1.900238,这个统计量接近2
怀特检验~~~~~~~~~~~