cd的边长为 正方形efgh内接于abcd ae=a af=b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:40:13
cd的边长为 正方形efgh内接于abcd ae=a af=b
正方形ABCD的边长为4 AE=BF=CG=DH=1 求四边形EFGH的边长

三角形AEH中,角A是直角.AE是1AH是3根据勾股定理EH应该是根号10

如图,EFGH分别为正方形ABCD的边AB,BC、cd、da上的点,

设边长=1,AE=BF=CG=DH=1/3ED=√10/3小正方形边长=√10/3-1/√10-1/3√10=√10/5小正方形面积=10/25=2/5阴影部分的面积与正方形ABCD的面积之比为=2/

已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,AH=

当DG=2时,求△FCG的面积 S△FCG=4 设DG=x,用含x的代数式表示△FCG的面积 S△FCG=6-x 证明: 过F,做M⊥DC于M&nbs

如图所示,正方形ABCD的边长为6,AE=1.5,CF=2.长方形EFGH的面积为几?

长方形是底成高三角形是底成高除以二所以是两倍啊啊啊啊这么弱智的东西应该懂吧

如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?

设AD与HG的交点为M,由题意知,∵四边形EFGH是△ABC内接正方形,∴HG∥BC,∴△AHG∽△ABC,∴HGBC = AMAD,HG21 = 15−HG1

如图,正方形EFGH内接于边长为1的正方形ABCD.设AE=x,试求正方形EFGH的面积y与x的关系,写出自变量X的取值

应用三角形外角等于不相邻两个内角和,可以证明出,图中的4个三角形是全等的.AB=1,AE=x,则BE=1-x.则EF=【x²+(1-x)²】½,所以正方形EFGH=EF&

已知:正方形ABCD的边长为1,正方形EFGH内接于ABCD,AE=a,AF=b,且SEFGH=23,则|b-a|=__

∵四边形ABCD与四边形EFGH是正方形,∴∠A=∠D=∠FEH=90°,EF=EH,∴∠AEF+∠DEH=90°,∠AEF+∠AFE=90°,∴∠DEH=∠AFE,在△AEF和△DHE中,EH=EF

如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为

对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=

急:如图 :四边形EFGH内接于边长为a的正方形ABCD,且AE=BF=CG=DH,设AE=x,四边形EFGH的面积为y

∠AEF=∠AEH+∠FEH=∠BFE+∠B所以∠AEH=∠BFE因为EH=EF,∠AEH=∠B=90°所以△AEH全等△BFE所以AH=BEAE=x,AB=a所以AH=BE=a-xy=S(EFGH)

如图 :四边形EFGH内接于边长为a的正方形ABCD,且AE=BF=CG=DH,设AE=x,四边形EFGH的面积为y

由已知得EFGH为正方形EFGH的面积y=HE²∵AH=a-x∴HE²=AH²+AE²y=(a-x)²+x²化简整理得y=a²-2

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

同一个圆的内接正方形和外切正方形的边长之比为多少?

根号2你设圆的直d则内切正方形的边长为根号2分之d外切正六变形的边长为1/2d两者一比就可以算出来了!再问:是外切正方形,不是六边形。再答:连接圆心和切点,作出边心距,可得到内接正方形和它的外切正方形

如图,正方形EFGH内接于边长为1的正方形ABCD,设AE=x,求y关于x的函数解析式

AH=BE=1-X,HE²=AE²+AH²=X²+(1-X)²=2X²-2X+1,即Y=X²-2X+1(0≤X≤1).

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.具

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

难 2、下图中,ABCD是边长为1的正方形,EFGH分别是四条边AB,BC,CD,DA的中点,

我们先连接HF,显然,HF中点O就是八边形的中心了,连接OE刚好经过八边形的一个顶点K,因为AHFB是长方形,K是对角线的交点,因此,很容易知道OK=(1/2)/2=1/4由于这个八边形是正八边形,这

已知正方形ABCD的边长为1,正方形EFGH内接于ABCD,AE=a,AF=b,且EFGH的面积为2/3,求|b-a|的

a+b=1.(1)a^2+b^2=2/3.(2)(1)^2-(2):2ab=1/3.(3)(2)-(3):(b-a)^2=1/3,|b-a|=√3/3.