CD是Rt△abc斜边ab上的高,bd=1cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:00:29
易证得CD=2分之一AB且MN=2分之一AB所以CD=MN
要知道ABC与ACD与CBD相似,(两角相等)这可以得到结论:AD:CD=CD:BD即BD=CD^2/AD=4第二问,同样利用相似关系:AB:BC=BC:BD,BD=BC^2/AB=9
∵CD是RT△ABC的斜边AB上的高∴∠ACB=∠ADC=90°又∵∠A=∠A∴∠ACD=∠ABC∴△ABC∽△ACD∴AC/AD=BC/CD即AC*CD=BC*AD再问:∠ACB=∠ADC=90°∠
由AC:BC=4:1得AC=4BC再由AC^2+BC^2=AB^2得(4BC)^2+BC^2=1,BC^2=1/17,AC^2=AB^2-BC^2=16/17S△ABC=AC*BC/2=AB*CD/2
设CD=x由勾股定理AC²=100+x²BC²=25+x²AC²+BC²=AB²=15²所以2x²+100+2
容易知道△ACD∽△ABC(两个角相等)所以AC/AB=AD/AC即AC²=AD*AB
EF=1/2ABCD=1/2AB所以CD=EF
(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下
证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC
证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠
将三角形补充为一个矩形,使得两直角边为矩形的长与宽,由矩形对角线互相平分且相等可得CD=1/2AB
CB*CA=AB*CD17*CD=15*厂(17*17-15*15)=15*8CD=120/17
设CD=X,在Rt△ADC中AC=√(X^2+9^2),在Rt△BDC中BC=(√X^2+16^2),则在Rt△ABC中有(X^2+9^2)+(X^2+16^2)=25^2,解得X=±12,舍负值,则
用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.
∵∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵BD=CD,∴∠B=∠BCD,∴∠A=∠ACD(等角的余角相等),∴AD=CD.
∵CD是Rt△ABC斜边AB上的中线,CD=4,∴AB=2CD=8.
证明:∵Rt△ABC中,CD是斜边AB边上的高,∴∠ADC=∠BDC=90°,∴∠ACD+∠A=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴CD/AD=BD/CD,即CD
∵△ABC是RT△,CD是斜边AB上的中线,∴CD=AB/2=5(cm),DE=5/2,(cm),AE=AD-DE=5/2(cm),BE=AB-AE=10-5/2=15/2(cm),∵CE⊥AB,∴C