数列an=nn!,bn=(n 1) anan 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:44:01
数列{An}及数列{Bn}都为等差数列,所以2an=a(n+1)+a(n-1)2bn=b(n+1)+b(n-1)cn=an+bn所以2cn=2an+2bn=a(n+1)+a(n-1)+b(n+1)+b
(1)由条件得2bn=an+an+1,an+12=bnbn+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25…(6分)(2)猜测an=n(n+1),bn=(n+1)2用数学
a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列√b1=√2(
n=1-an,第二个式子代入bn=1-anbn+1=(1-an)/(1-an^2)=1/(1+an)an+1=1-bn+1=an/(1+an)求倒数1/(an+1)=1+1/an令cn=1/an,cn
题目都说是猜了所以先找规律a1=1b1=2an,bn,an+1成等比数列a2=4bn,an+1,bn+1成等差数列b2=6依次得到a3=9b3=12a4=16b4=20...可以看出an=n^2bn=
1.bn=(3an-2)/(an-1)an=(bn-2)/(bn-3)a(n+1)=[b(n+1)-2]/[b(n+1)-3]a(n+1)=(4an-2)/(3an-1)3a(n+1)an-a(n+1
1=log2(a1-1)=log22=1b3=log2(a3-1)=log28=3所以b2=2,bn=nn=log2(an-1),an=2^n+1Sn=2(1-2^n)/-1+n=2^(n+1)+n-
n=√an*a(n+1)b(n+1)=√a(n+1)a(n+2)[b(n+1)/bn]^2=[a(n+1)*a(n+2)]/[a(n+1)*an]=a(n+2)/ana(n+2)=q^2*an
设an公差为d那么通过等差数列定义,只要bn-b(n-1)是常数bn-b(n-1)=an+a(n+1)-[a(n-1)+an]=a(n+1)-a(n-1)=2d所以bn是等差数列.
设{bn}共比为q则q=b(n+1)/b(n)=3^a(n+1)/3^a(n)=3^[a(n+1)-a(n)]所以a(n+1)-a(n)=log(3,q)是定值,所以{an}是等差数列若a8=a13=
(1)a1=2,b1=42*4=2+a2,则a2=66^2=4*b2,则b2=92*9=6+a3,则a3=1212^2=9*b3,则b3=16由a1=2=1*2,a2=6=2*3,a3=12=3*4猜
这类问题你只要把握一个规律:an是等差数列,bn是等比数列,那么an*bn或an/bn的前n项和的求法就是乘以公比(这道题目是2),然后就会出来另一个等比数列的求和.反正就是这
设an=a1+(n-1)d,bn=an+a(n-1)=a1+(n-1)d+a1+nd=2a1+(2n-1)dbn为首项为2a1-d,公差为2d的等差数列
d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n
a(n)=aq^(n-1),a>0,q>0.a+aq=a(1)+a(2)=2[1/a(1)+1/a(2)]=2[1/a+1/(aq)]=2(q+1)/(aq),a=2/(aq),q=2/a^2,a(n
(1)bn+1=(an+1-2)/(1-an+1)=(an-2)/(2-2an)bn=(an-2)/(1-an)bn+1/bn=1/2b1=-1/2bn为等比数列(2)(an-2)/(1-an)=-1
n-b(n-1)=1/(2-4/(an-1))-1/(a(n-1)-2)=a(n-1)/(2a(n-1)-4)-2/(2a(n-1)-4)=(a(n-1)-2)/(2a(n-1)-4)=1/2,所以数
(1)a(n+1)-an=(n+1+2013)-(n+2013)=1∴b(n+1)-bn=cn/[a(n+1)-an]=cn=2^n+n∴bn-b(n-1)=2^(n-1)+n-1...b2-b1=2
An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)
a(n+1)+b(n+1)=1,b(n+1)=(1-an)/(1-an²)=1/(1+an),a(n+1)+1/(1+an)=1,a(n+1)an+a(n+1)+1=1+an,a(n+1)a