数列a n满足a1等于1且an 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:29:13
an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1
累加法:an-an-1=3(n-1)+2an-1-an-2=3(n-2)+2an-2-an-3=3(n-3)+2到a2-a1=3*1+2=5所以全部加合为:an-a1=5+……+3(n-3)+2+3(
a1=1,a(n+1)=an/(an+1),取倒数得:1/a(n+1)=(an+1)/(an).即1/a(n+1)=1/an+1,所以{1/an}是首项为1,公差为1的等差数列,1/an=1+(n-1
由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴
an=2(an-1+2^n)-2^n→(an+2^n)/(an-1+2^n)=2→{an+2^n}是首项为3,q=2的等比数列→an+2^n=3*2^(n-1)→an=3*2^(n-1)-2^n
两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-
a1=1an=an-1+3n-2an-1=an-2+3(n-1)-2...a2=a1+3*2-2左右分别相加an=a1+3*(n+n-1+...+2)-2*(n-1)an=1+3*(n+2)*(n-1
a(n+1)=an/1+ana(n+1)(1+an)=ana(n+1)+a(n+1)an=an两边除a(n+1)an1/an+1=1/a(n+1)1/a(n+1)-1/an=1所以数列{1/an}为等
an=(1/3)a(n-1)+(1/3)^n,等式两边同除(1/3)^nan/(1/3)^n=a(n-1)/(1/3)^(n-1)+1,又a1/(1/3)=3.所以,数列{an/(1/3)^n}是首项
an/2^n=(2an-1)/2^n+1=(an-1)/2^(n-1)+1an/2^n-(an-1)/2^(n-1)=1则{an/2^n}是公差为1的等差数列.设Tn=an/2^n则Tn是公差为1的等
如果an=n(n+an-1)的an-1表示第n-1项所以an=n^2+nan-1所以an-nan-1=n^2an-1-(n-1)an-2=(n-1)^2an-2-(n-2)an-3=(n-2)^2..
等于2,规律就是6个以后就是反复了.
解An+1/An=2^n所以A2/A1=2所以数列是以1为首相2为公比的等比数列所以通向公式an=2^(n-1)
1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c
由A(N-1)+A(N+1)=2AN可得AN-A(N-1)=A(N+1)-AN因此AN是等差数列A3+A7=A1+2D+A1+6D=2A1+8D=18D=(18-2A1)/8=(18-2*1)/8=2
a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1
由题意知:2an/[anSn-(Sn)²]=1(n>1)则:(Sn)²-anSn+2an=0(n>1)又因为:an=Sn-S(n-1)(n>1)所以:(Sn)²-[Sn-
∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4
A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2