摆线x=a(t-sint),y=a(1-cot)的一拱,y=0,绕直线y=2a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:53:39
所求体积=∫π[a(1-cosθ)]²*a(1-cosθ)dθ=πa³∫(1-cosθ)³dθ=πa³∫(1-3cosθ+3cos²θ-cos
由于∂P/∂y=∂Q/∂x,因此积分与路径无关,重新选择积分路线L1:从O(0,0)到B(π,0),y=0,x:0→πL2:从B(π,0)到A(π,2)
楼上的思路基本正确,积分时要将y,x转换为用t表示的函数.我补充一下过程吧:S=∫|y|dx=∫a(1-cost)dx(∵y=a(1-cost)≥0,其中a>0)又∵x=a(t-sint)∴dx=a(
4a[1-cos(t/2)]=8a[sin(t/4)]^21-cost=2[sin(t/2)]^2sint=2sin(t/2)cos(t/2)tan(t/2)=(1-cost)/sintcot(t/2
利用参数方程求面积的公式解定积分 过程如下图:
dx/dt=a(1-cost)dy/dt=asinty'=dy/dx=(dy/dt)/(dx/dt)=sint/(1-cost)dy'/dt=[cost(1-cost)-sint(sint)]/(1-
由对称性,S=4∫(0→a)ydx=4∫(π/2→0)a(sint)^3d[a(cost)^3]=12a^2×∫(0→π/2)(sint)^4×(cost)^2dt=12a^2×∫(0→π/2)[(s
摆线属于常用平面曲线,其图形可以先画出来,整个区域是一个曲边梯形,底边是区间[0,2πa],曲边是摆线,所以图形的面积是一个定积分:S=∫(0→2πa)ydx,把x=a(t-sint),y=a(1-c
直接用公式吧:这是参数方程先各自求个导:x'(t)=a(1-cost)y'(t)=asintL=积分:(0,2*pi)[x'^2(t)+y'^2(t)]^(1/2)dt=积分:(0,2pi)(2a^2
小的不才,可以给你一个思路,任何图形绕X轴转一周的表面积均可用以下公式求出(我自创的哦,呵呵)S=∫f(x)*√1+[f'()]^2*dx其中∫为积分符号,√为根号.根据题意,f'(x)=(1-cos
2由摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2∏)与y=0所围图形的面积=∫(0,2πa)ydx=∫(0,2π)a(1-cost)d[a(t-sint)]=a^2∫(0,2π
S=∫ydx=∫a(1-cost)d(a(t-sint))=a^2∫(1-cost)^2dt希望采纳
摆线属于常用平面曲线,其图形可以先画出来,整个区域是一个曲边梯形,底边是区间[0,2πa],曲边是摆线,所以图形的面积是一个定积分:S=∫(0→2πa)ydx,把x=a(t-sint),y=a(1-c
先积y,∫∫y²dσ=∫[0---->2πa]dx∫[0--->y(x)]y²dy=(1/3)∫[0---->2πa]y³(x)dx换元:令x=a(t-sint),则y(
符号不好输入,直接上图~再问:嗯,那个图是怎么画出来的?我的参考资料有这个图,但我不知道怎么画出来,能给我说说吗?这个图形还有个圆是怎么回事?辛苦了,谢谢再答:这个不是准确的图啦~~只是一个示意图。大
S=∫|y|dx=∫a(1-cost)dx(∵y=a(1-cost)≥0,其中a>0)又∵x=a(t-sint)∴dx=a(1-cost)dtS=∫(0,2π)a²(1-cost)²
计算对弧长的曲线积分∫y²ds,其中C为摆线x=a(1-sint),y=a(1-cost)(0≤t≤2π).C:x=a(1-sint),y=a(1-cost);dx/dt=-acost,dy