抛物线y^2=4x过焦点的两条直线AC,BD,若直线AB过点(4,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:03:50
抛物线y^2=4x过焦点的两条直线AC,BD,若直线AB过点(4,0)
已知抛物线y=x^2的焦点为F,准线为L,过L上一点P作抛物线的两条切线,切点分别为A B,则PA PB夹角是

参考这题不行再联系我再问:axb为什么等于-1/4再答:韦达定理两根之积还有你是哪里的学生再问:可是没有x^2,a是什么再答:就是设的A点我帮你解吧。。。你等我下再问:不是我指的是韦达定理中的abc再

已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA,PB,切点分别为A,B.10

已知抛物线方程x²=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B;求证:直线AB过定点(0,4).设过P的切线方程为y=k(x-t)-4,代入抛物线方程得x

设抛物线C:y=x^2的焦点为F,动点P在直线L:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线分

y=x^2==>p=1/2设:A(x1,x1^2),B(x2,x2^2)根据抛物线的切线公式得:AP的方程是:2x1x-y-x1^2=0----------------------------(1)B

设抛物线C:Y=X?的焦点为F,动点P在直线L:X-Y-2=0上运动,过P作抛物线c的两条切线PA,PB,且与抛物线C分

三角形APB的重心G的轨迹方程是:y=1/3(4x^2-x+2)这里打不下,看这个回答就可以

已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,过点P作抛物线两条切线PA、PB,切点为A、B

(1)设A、B两点坐标分别是(xa,ya)、(xb,yb),它们与焦点F(0,1)共线,所以(ya-1)/(xa-0)=(yb-1)/(xb-0)=>xa/xb=(ya-1)/(yb-1).(1)过A

已知直线l通过抛物线x平方=4y的焦点F,且与抛物线交于A、B两点,分别过A、B两点的抛物线的两条切线相交于点M,则角A

x²=4y,准线y=-1设A(x1,x1²/4),B(x2,x2²/4),AB中点为C,作AD⊥准线于D,BE⊥准线于E直线L:y-1=kx,即y=kx+1联立直线抛物线

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

已知抛物线C:x^2=4y的焦点为F,经过点F的直线l交抛物线于A、B两点,过A、B两点分别作抛物线的切线,设两切线的交

见图(2)中没写入AB与x轴平行的情况.此时,A,B关于y轴对称,过两点的切线也如此,交点为(0,-1), 此时MF显然与AB垂直(3)不影响结果,不妨设A在第一象限.同时令从A, B到M的

过抛物线y^2=4x的焦点F的直线L与这条抛物线交于A.B两点,O为坐标原点

1.设A、B、G坐标为(x1,y1)(x2,y2)(x3,y3)L为y=kx-k(k≠0)3x3=x1+x23y3=y1+y2将直线方程代入抛物线方程得:ky^2-4y-4k=04(x1+x2)=y1

求过抛物线X^2=4Y的焦点弦中点的轨迹方程

抛物线焦点F为(0,1)设直线方程为(y-1)/x=ky=kx+1代入抛物线,化简x^2-4kx-4=0根据伟大定理设中点坐标为(x0,y0)x1+x2=4k,即x0=(x1+x2)/2=2k由于中点

已知抛物线y^2=4x,F为抛物线的焦点且PQ为过焦点的弦,若|PQ|=8求△OPQ的面积

面积为4乘以根号2,.设x=ky+1,代入抛物线方程PQ可用k表示,求得k的平方为1.面积就出来了我做了,你也要做一下哦有问题,可以问我

已知抛物线C:x^2=4y,M为直线:y=-1上任意一点,过点M做抛物线的两条切线MA,MB,

点击放大图片很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题.有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

已知抛物线x^2=2y的焦点F 准线l 过l上一点P做抛物线的两条切线 切点分别为AB 求证

如图 21题http://www.gaokao750.cn/Files/adminfiles/wanglei/Resource/%B8%DF%BF%BC%CA%D4%BE%ED%BF%E2/

已知抛物线方程X平方=4Y,过抛物线焦点F(1,0)作斜率存在且相互垂直的两条直线L1,L2

设L1斜率为k,写出两直线方程,于抛物线方程联立,用△>0得到K的范围,写出x1x2x3x4的韦达定理,用坐标表示出所求量,把坐标换成k的代数式,用K的范围求最值

已知抛物线方程X平方=4Y,过抛物线焦点F(0,1)作斜率存在且相互垂直的两条直线L1,L2

向量不好表示,在此全用字母表示,应该看得懂吧AD*EB=(AF+FD)*(EF+FB)=AF*EF+AF*FB+FD*EF+FD*FB=AF*FB+FD*EF设A,B,C,D坐标分别为(x1,y1)(

已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.

http://cache.baidu.com/c?m=9f65cb4a8c8507ed4fece7631043843b4007dd743ca0884e23d7955f93130a1c187b84fa7

已知抛物线C1:y^2=4x圆C2:(x-1)^2+y^2=1,过抛物线焦点的直线l交C1于A,D两点,交C2于B.C两

1.C1的准线为y=-1,焦点为(1,0),由作图可知AB、CD的长度分别为A、D的横坐标值,设过煎焦点的直线方程为y=k(x-1),代入C1求解的A、D的横坐标分别为[k^2+2-2*(k^2+1)

已知抛物线y^2=4x,过焦点的弦A,B被焦点分成长为m,n(m≠n)的两段,那么()

焦点坐标(1,0),设直线AB方程为y=k(x-1),代入抛物线方程得:x²-(2+4/k)x+1=0,由韦达定理可知:x1+x2=2+4/k,x1x2=1根据抛物线上的点到焦点距离等于到准