抛物线y=ax-2ax 根号3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:04:01
抛物线y=ax-2ax 根号3
如图,在直角坐标系中,点A的坐标为(-2,0),点B的坐标为(1,-根号3),已知抛物线y=ax²

抛物线过A、O,设解析式:Y=aX(X+2),又过(1,-√3),∴-√3=2a,a=-√3/2,∴Y=-√3/2(X²+2X)=-√3/2X²-√3X,Y=-√3/2(X

三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2根号3),抛物线Y=.ax平方+bx+c经过A、B

你作B点关于AC直线的对称点E,即B点和E点关于直线AC是对称的,然后连接E和D,交点为P,这就是我们要求的点.所以,你只需要求出E的坐标,然后求直线AC和DE的交点即可

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

如图,抛物线y=ax^2+bx+c的顶点为d,与y轴交于点c,直线cd的解析式为y=根号3x+2根号3

令:x=0,代入所给抛物线y=ax²+bx+c,有:y=a×0²+b×0+c得:y=c即:点c坐标为(0,c)由:y=ax²+bx+c知道点d的坐标是(-b/(2a),(

抛物线y=ax^2+bx+c的顶点为d,与y轴交于点c,直线cd的解析式为y=根号3x+2根号3 c( 0 ,二倍根号三

令:x=0,代入所给抛物线y=ax²+bx+c,有:y=a×0²+b×0+c得:y=c即:点c坐标为(0,c)由:y=ax²+bx+c知道点d的坐标是(-b/(2a),(

抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)

解题思路:本题较难,第三问分类讨论解题过程:最终答案:略

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

1已知抛物线y=x^2+ax+a+2

第一个是与什么有交点?要是与X轴,就x^2+ax+a+2=0,求出x的2个值.两点距离最短,就只有1个交点,根据b^2-4ac=0,得出a^2-4(a+2)=0,得出a.2,根据y=x^2-(k+1)

抛物线y=3ax²+2bx+c

(1)抛物线:y=3x²+2x+c①当△=0时即△=4-12c=0c=⅓交点:x=-⅓在(-1,1)范围内故c=1/3②当△>0且左侧交点在(-1,1)范围内时即c<

三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2根号3),抛物线Y=.ax平方+bx

设y=ax²+bx+c,过A(-2,0),B(6,0),C(0,-2√3)可知对称轴x=(6-2)÷2=2.将A,B,C代入y:0=4a-2b+c(1)0=36a+6b+c(2)-2√3=c

已知抛物线y=ax²-4ax+4a-2 其中a是常数 1求抛物线顶点坐标

y=ax²-4ax+4a-2=a(x²-4x+4)-2=a(x-2)²-2所以顶点坐标为(2,-2)

抛物线y=ax^2+bx+c开口向下,顶点在直线y=x上,且图像过原点,顶点到原点的距离为3根号2,求抛物线解析式.

俊狼猎英团队为您解答顶点到原点的距离为3√2,顶点在Y=X上,∴顶点为(3,3)或(-3,-3),但开口向下且过原点,∴顶点只能为(3,3),设解析式为Y=a(X-3)^2+3,令X=0,Y=0,得a

已知抛物线y=ax²-2ax+b经过A(-1,0)和c(0,3/2)两点,求这条抛物线的顶点坐标

把A(-1,0)C(0,3/2)带入y=ax²-2ax+b.0=a+2a+b3/2=ba=-1/2b=3/2y=-1/2x²+x+3/2顶点(1,2)

已知函数Y=2X的图像和抛物线Y=AX的平方+3

12,由题意,A(1,2),B(0,3).所以s△AOB的底边OB=3,高为1.故s△AOB=1/2×3=3/2..13,由于(2,b)在y=2x上,所以b=4..把x=2,y=4代入y=ax

已知抛物线y=ax2-3ax+4,

(1)抛物线的对称轴为x=-−3a2a=32;(2)将A(-1,0)代入y=ax2-3ax+4得,a+3a+4=0,解得a=-1,解析式为y=-x2+3x+4.当y=0时,原式可化为x2-3x-4=0

已知抛物线y=3ax的平方+2bx+c.

当a=b=1,抛物线方程即为y=3x^2+2x+c△=sqrt(4-12c)=2*sqrt(1-3c)y与x轴交点为:(-2±2*sqrt(1-3c))/(2*3)=(-1±sqrt(1-3c))/3

抛物线抛物线y=ax的平方+bx+c.

将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: