抛物线y2=2px,M(p,根号2p)NF:FM
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:56:42
由直线l过抛物线的焦点F(p2,0),得直线l的方程为x+y=p2.由x+y=p2y2=2px消去,得y2+2py-p2=0.由题意得△=(2p)2+4p2>0,y1+y2=−2p,y1y2=−p2.
(1)∵抛物线的方程为y2=2px(p>0),∴当p=4时,y2=8x,代入y=2,解得x=12.则由抛物线定义知:该点到焦点F的距离即为其到准线x=-2的距离,∴该抛物线上纵坐标为2的点到其焦点F的
依题意可知a2+b2=p249a2p2-4b2p2=1,两式相减求得8b2=5a2,∴ba=58=104∴双曲线的渐近线方程为y=±bax=±104x故答案为:y=±104x
设P(x,y),F(p/2,0),设M(yo^2/2p,yo),所以x=(p^2+yo^2)/4p,y=yo/2,所以y^2=px-p^2/4,这就是轨迹方程
由抛物线的定义知|AB|=|AF|+BF|=x1+x2+p(点F是抛物线的焦点)因为向量2OM-OA=OB,则点M(2,m)是线段AB的中点,所以|AB|=x1+x2+p=4+p再问:答案是AB=5求
设A=(x1^2/2p,x1),B(x2^2/2p,x2)则AB连线方程为y=2px/(x1+x2)+x1x2/(x1+x2)过点F(p/2,0)所以p^2+x1x2=0p^2=-x1x2M=[(x1
由于抛物线上各点与焦点距离的最小值为2,∴p2=2,∴2p=8,∴抛物线的方程为y2=8x设点N((x,y),则M(2-x,2-y),代入抛物线方程得:(y-2)2=-8(x-2),故选C.
点M到焦点的距离为6则M到准线的距离也是6准线是x=4-6=-2=-p/2p=4抛物线方程是y^2=8xx=4时y=±4√2所以m=±4√2
1、因为A,B关于M(2,2)对称,所以,AB中点为M(2,2)则可设AB:x=m(y-2)+2,A(x1,y1),B(x2,y2)(显然直线斜率存在且不为0,斜率不存在的话,弦的中点肯定在x轴上;斜
根据抛物线方程可知准线方程为x=-p2,且32=2pm,⇒m=92p∵M点到抛物线焦点的距离为5,根据抛物线的定义可知其到准线的距离为5,∴92p+p2=5,即p2-10p+9=0,解得:p=1或p=
设点N的坐标为(x',y'),则y’²=2px’.|MN|=√[(x'-a)²+y'²]=√[(x-a)²+2px']=√[x'²+(2p-2a)x’
设A(x1,y1)B(x2,y2)M(x0,y0)N(-p/2,y0)F(p/2,0)点差法计算AB斜率:A,B满足抛物线方程y1^2=2px1y2^2=2px2两式相减y1^2-y2^2=2px1-
由题知M(1,m)到准线x=-p/2的距离为3即|-p/2|=|3-1|∴p=4∴y^2=8x∴M(1,±2√2)∴b/a=2√2/1即b^2=8a^2∴c^2=9a^2∴e=3很高兴为您解答,【学习
由题意可知:抛物线线y2=2px(p>0)的准线方程为x=-4∴p=8则点M(1,4),双曲线x2a-y2=1的左顶点为A(-a,0),所以直线AM的斜率为k=41+a,由题意可知:41+a=1a∴a
设直线AB:y=3x-3,代入y2=2px得3x2+(-6-2p)x+3=0,又∵AM=MB,即M为A、B的中点,∴xB+(-p2)=2,即xB=2+p2,得p2+4P-12=0,解得p=2,p=-6
∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+p2=5,p=8
(Ⅰ)由⊙M:x2+y2-8x+12=0,配方得(x-4)2+y2=4,∴圆心M(4,0),半径r=2.由题意知:4+p2=92,解得p=1,∴抛物线C的方程为y2=2x. &n