抛物线y ax² bx c 的顶点为D(-1,3)与x轴的一个交点A在点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:56:02
EF=3,所以C点坐标为(0,3)抛物线经过C点,所以3=-0²+b*0+c所以c=3OF=2,EF=3,所以E点坐标为(2,3)抛物线经过E点,所以3=-2²+b*2+3所以b=
(1)A(1,4)由题意知,可设抛物线解析式为y=a(x-1)2+4∵抛物线过点C(3,0),∴0=a(3-1)2+4,解得,a=-1,∴抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3
由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3
大哥,你问题都没说清楚啊~
a^2=16,b^2=9双曲线的右顶点(4,0),左焦点(-5,0)抛物线开口朝左设抛物线的方程为y^2=-2p(x-4)(p>0)p/2=4-(-5)=92p=36抛物线的方程是y^2=-36(x-
①设抛物线的方程为Y=aX²+bX+c又该抛物线过点O(0,0)点A(4,0)所以c=0Y=a(x-2)²-4a直线y=2x-1过点B(-2,m)所以m=-5又点B在抛物线上,代入
(1)∵直线y=ax+3与y轴交于点A,∴点A坐标为(0,3),∴AO=3,∵矩形ABCO的面积为12,∴AB=4,∴点B的坐标为(4,3),∴抛物线的对称轴为直线x=2; &n
说明:分数不好打,一律打成小数!(1)可用抛物线的顶点坐标式求:设y=a(x-5)^2+25/4将(0,0)点代入可求出为y=-0.25x^2+6.25(2)由矩形的性质可知,A、B都在x轴上,说明D
与点C成轴对称的应为F点,则F(2,3)过点F作FH⊥BQ,设垂足为H(m,n),由BH=FH得 (m-3)^2+n^2=(m-2)^2+(n-3)^2,化简得m=3n-2, 因为∠BHF=9
说明:分数不好打,一律打成小数!(1)可用抛物线的顶点坐标式求:设y=a(x-5)^2+25/4将(0,0)点代入可求出为y=-0.25x^2+6.25(2)由矩形的性质可知,A、B都在x轴上,说明D
解题思路:利用“减右加左”的平移法则来平移,再利用经过B(0,4)来求出a,然后利用轴对称的知识找出点P。解题过程:解答过程见附件。最终答案:略
此二次函数的解析式为 y = x² -2x - 3 ,在x = 1时,函数有最小值 
解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:
(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,得c=33=−4+2b+c,解得b=
⑴∵A、B的横坐标是x²-4x-12=0的两根,∴A(-2,0),B(6,0).设对称轴交x轴于E,E为AB的中点,∴E(2,0),∴抛物线的对称轴为:x=2,在Rt△ADE中,AE=4,c
准线为x=-9/8,所以M的横坐标为-9/8+9.125=8,即x=8.代入得y=6或-6.用距离公式得OM=10.
(1)A(3,0)B(0,-3)则c=3y=x2+bx-3当x=3,y=0时,b=-2y=x2-2x-3(2)的题目有问题吧!
希望我的图片够清晰(最后一题详见解释)(1)面积△ABC=3√3,△ADE=1(2)面积△ABC=(3√3)/a^2,△ADE=1/a^2 所以面积并不是不变,而是随a值的改变而发生改变(3
平移的距离为2向左向右都可以设平移的距离为m由几何关系得D的坐标为(2,-1)E的坐标为(m+2,-1)由于MDE为等腰直角三角形易得到交点M的坐标(2+2分之m,2分之m的绝对值然后—1)在方程y=
1)因为抛物线的顶点在x轴上,所以抛物线与x轴只有一个交点所以X²+bX+1=0的判别式=0,即△=b²-4=0,解得b=2,-2因为顶点在y轴的左侧,所以b>0,b取2所以抛物线