把抛物线y=-2x的平方 4x 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:02:38
把抛物线y=-2x的平方 4x 1
若一元二次方程ax平方+bx+c=0的根为x1=-5,x2=2则抛物线y=ax平方+bx+c与x轴交点坐标为?若抛物线y

(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,

过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点

由题设函数为y=kx+b带入点P(2,0)得到0=2k+b则b=-2k从而y=kx-2k因为直线L与y²=x交于两点则(kx-2k)²=xk²x²-4k

已知抛物线 y=x^2+bx-x+c与x轴交点的横坐标为X1、X2,且X1>0,X2=X1+1.

设f(x)=x^2+bx+c,则题中f(x)-x=x^2+bx-x+c与x轴交点的横坐标为X1、X2=x1+1,设f(x)-x=(x-x1)(x-x1-1)f(x)=(x-x1)(x-x1-1)+xy

抛物线y=-x平方+4x+m-2的顶点恰好在另一条抛物线y=2x平方+bx+11的顶点上

Y=-X^2+4X+m-2=-(X-2)^2+m+2,顶点坐标为(2,m+2),Y=2[X^2+n/2X+(n/4)^2]+11-n^2/8=2(X+n/4)^2+11-n^2/8,(根据题意改b为n

如图,一元二次方程x的平方+2x-3=0的二根x1、x2(x1小于x2)是抛物线y=ax平方+bx+c与x轴的两个交点B

(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,

已知抛物线y等于负x的平方+(m-4)x+2m+4与X轴交于点A(X1,0)\B(X2,0)两点,与Y轴交于点C,且X1

(1)由题目知该方程的对称轴为x=(m-4)/2C点坐标为(0,2m+4)因为与x轴分别交与x1和x2所以对称轴也就是x1和x2的中点x1+x2=(m-4)/2*2=m-4又x1+2x2=0可以算出x

1 当x=-1,y有最大值4,抛物线与x轴的交点的横坐标为x1,x2 ,且x1的平方+x2的平方=10,

令抛物线为y=ax2+bx+c,∵x1的平方+x2的平方=10∴(x1+x2)的平方=x1的平方+x2的平方+2倍x1x2即:(-b/a)的平方=10+2×(c/a)……①∵当x=-1时,y的最大值=

过抛物线y平方=4x的焦点做直线交抛物线于A(X1,Y1),B(X2,Y2)两点,如果X1+X2=6,则|AB|的值为?

解;焦点(1,0)准线:X=-1,由抛物线定义可知,点A到焦点距离为:X1+1,同理,得,点B到焦点距离为X2+1,而直线AB过焦点,故|AB|=X1+1+X2+1=6+2=8再问:能不能具体一点,为

如果抛物线y= -x平方-2x+p的顶点在直线y=x/2-1上,求p的值;再把抛物线的表达式改写成y=a(x+m)平方+

设他们的交点为A,则点A的X与Y的关系既满足直线方程又满足抛物线方程.抛物线有个顶点公式设抛物线为aX平方+bX+c=Y顶点的横坐标值为-b/2a,纵坐标值为(4ac-b平方)/4a故A(-1,(-4

抛物线Y=2x平方的焦点坐标是

x平方=y/22p=1/2p/2=1/8开口向上所以焦点是(0,1/8)

把抛物线y=-x的平方向上平移4个单位后,得到的抛物线的函数表达式为 平移后的抛物线的顶点坐标是

见图,蓝线和红线分别为y = -x^2 和y = -x^2 +4(y = -x^2向上平移4个单位而来)的图像.y&nb

经过抛物线x平方=4y的焦点作弦MN,若M M两点的坐标分别为(x1,y1) (x2,y2),则x1x2=?

由题意得,MN斜率显然存在,焦点(0,1)设MN:y-1=kx①x平方=4y②x^2-4kx-4=0x1x2=-4

怎么样将抛物线y=2x的平方-4x+5平移到抛物线y=2x的平方+4x-5的位置

向左移2个单位,向下移10个单位第一个抛物线可以化为y=2x?-4x+5=2(x-1)?+3第二个抛物线可以化为:y=2x?+4x-5=2(x+1)?-7所以从第一个抛物线平移到第二个抛物线时,x的坐

抛物线Y=4x平方的焦点坐标

x²=(1/4)y2p=1/4p/2=1/16所以是(0,1/16)

抛物线y=4x平方的交点坐标是?

抛物线标准方程:x平方=2py,其焦点坐标为(0,p/2);因为y=4x平方,化成x平方=(1/4)*y,所以对应于标准方程中的p=1/8故焦点坐标为:(0,1/16)位于y轴正半轴

求y=4x的平方的抛物线焦点

x²=y/42p=1/4p/2=1/16所以焦点是(0,1/16)

设抛物线y=x平方+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则

y=x^2+kx+4的两根为x1,x2△=k^2-16>0k^2>16由韦达定理x1+x2=-kx1x2=4x1^2+x2^2=(x1+x2)^2-2x1x2=k^2-8>16-8=8证毕