把yOz面中的抛物线z=y^2 b^2绕轴z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:59:03
把yOz面中的抛物线z=y^2 b^2绕轴z
已知三平面:2x+y+z-3=0,x-y+2z-3=0,x+z-3=0,求直截面三角形的面积

仔细想了想,应该很简单,先解析一下解析:分析第三个平面可以发现,它是一个平行于y轴的平面,而且点(0,0,3)和点(3,0,0)都在面zox和面x+z-3=0上,而面zox又与x+z-3=0垂直,那么

求曲线x+y+z=3 x+2y=1在yOz面上投影方程.具体如图

z=3-x-yx=1-2y求得z=2+yy=z-2回答完毕

求抛物面壳z=1/2(x^2+y^2)的质量,面密度为u=z,(0

答:s=∫∫u(x,y,z)sqrt(1+(dz/dx)^2+(dz/dy)^2)dxdy=∫∫1/2(x^2+y^2)sqrt(1+x^2+y^2)dxdy=∫∫1/2r^2sqrt(1+r^2)r

计算由曲面y^2=x及y=x^2和平面z=0,x+y+z=2所围成立体的体积

所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

求平面x+2y-2z+6=0和平面4x-y+8z-8=0的夹角的平分面方程.

角平分面必过平面1:x+2y-2z+6=0与平面2:4x-y+8z-8=0的交线可设角平分面的方程为λ(x+2y-2z+6)+4x-y+8z-8=(λ+4)x+(2λ-1)y+(8-2λ)z+(6λ-

求通过点P(2,-1,1)且同时垂直于平面x-y=0和yOz平面的平面方程

平面x-y=0法向量(1,-1,0)yOz平面的法向量(1,0,0)求他们的向量积再代入点法式方程问题解决了!

已知:2(√X+√y-1+√z-2)=x+y+z,求x、y、z的值.(注:"√"数学中的根号)

方法一:2√x+2√(y-1)+2√(z-2)=x+y+z移项,得x+y+z-2√x-2√(y-1)-2√(z-2)=0(x-2√x+1)+[(y-1)-2√(y-1)+1]+[(z-2)-2√(z-

如果实数x,y,z满足x^2+y^2+z^2-(xy+yz+zx)=8,用A表示|x-y|,|y-z|,|z-x|中的最

对称性不妨设:x≥y≥za=|x-y|=x-y,b=|y-z|=y-z,c=|z-x|=x-z有:a、b、c≥0;c=a+b则:c≥a、b≥0A的最大值=c已知得出:16=a^2+b^2+c^2=2c

原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.

先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:

将yoz面上的一双曲线y^2/b^2-z^2/c^2=0绕y轴旋转一周,求所得的旋转曲面方程

绕y轴旋转一周,y不变,另一个变量z^2换成x^2+z^2,即y^2/b^2-(x^2+z^2)/c^2=1为双叶双曲面.

求椭球面 x^2+2y^2+z^2=1 上平行于平面 x-y+2z=0 的切平面方程

设f(x,y,z)=x^2+2y^2+z^2-1,偏导数:f'x=2x,f'y=4y,f'z=2z,椭球面法向量:n=(2x,4y,2x)

把抛物线y=2x2向上平移1个单位后得到的抛物线解析式是:______.

∵抛物线y=2x2的顶点坐标是(0,0),∴平移后的抛物线的顶点坐标是(0,1),∴得到的抛物线解析式是y=2x2+1.故答案为:y=2x2+1.

图中的抛物线是函数y=x2+1的图象,把这条抛物线沿直线y=x的方向平移2个单位,其函数解析式变为______.

∵沿直线y=x的方向平移2个单位,∴横坐标和纵坐标都平移1个单位,∵函数y=x2+1的顶点坐标为(0,1),∴平移后的抛物线的顶点坐标为(1,2)或(-1,0),∴函数解析式为y=(x-1)2+2或y

z=x^2+y^2表示的二次曲面是椭球面,柱面,圆锥面,还是抛物面?

图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点