把yOz面中的抛物线z=y^2 b^2绕轴z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:59:03
仔细想了想,应该很简单,先解析一下解析:分析第三个平面可以发现,它是一个平行于y轴的平面,而且点(0,0,3)和点(3,0,0)都在面zox和面x+z-3=0上,而面zox又与x+z-3=0垂直,那么
z=3-x-yx=1-2y求得z=2+yy=z-2回答完毕
先给分再问:�š�����
答:s=∫∫u(x,y,z)sqrt(1+(dz/dx)^2+(dz/dy)^2)dxdy=∫∫1/2(x^2+y^2)sqrt(1+x^2+y^2)dxdy=∫∫1/2r^2sqrt(1+r^2)r
所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30
∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.
角平分面必过平面1:x+2y-2z+6=0与平面2:4x-y+8z-8=0的交线可设角平分面的方程为λ(x+2y-2z+6)+4x-y+8z-8=(λ+4)x+(2λ-1)y+(8-2λ)z+(6λ-
平面x-y=0法向量(1,-1,0)yOz平面的法向量(1,0,0)求他们的向量积再代入点法式方程问题解决了!
方法一:2√x+2√(y-1)+2√(z-2)=x+y+z移项,得x+y+z-2√x-2√(y-1)-2√(z-2)=0(x-2√x+1)+[(y-1)-2√(y-1)+1]+[(z-2)-2√(z-
对称性不妨设:x≥y≥za=|x-y|=x-y,b=|y-z|=y-z,c=|z-x|=x-z有:a、b、c≥0;c=a+b则:c≥a、b≥0A的最大值=c已知得出:16=a^2+b^2+c^2=2c
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
绕y轴旋转一周,y不变,另一个变量z^2换成x^2+z^2,即y^2/b^2-(x^2+z^2)/c^2=1为双叶双曲面.
设f(x,y,z)=x^2+2y^2+z^2-1,偏导数:f'x=2x,f'y=4y,f'z=2z,椭球面法向量:n=(2x,4y,2x)
您够可以的了,哈哈哈,比这个好积的想来不多了
∵抛物线y=2x2的顶点坐标是(0,0),∴平移后的抛物线的顶点坐标是(0,1),∴得到的抛物线解析式是y=2x2+1.故答案为:y=2x2+1.
∵沿直线y=x的方向平移2个单位,∴横坐标和纵坐标都平移1个单位,∵函数y=x2+1的顶点坐标为(0,1),∴平移后的抛物线的顶点坐标为(1,2)或(-1,0),∴函数解析式为y=(x-1)2+2或y
图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点
z=ax²+by都可以,没什么固定的.