bc是圆o的弦,ad垂直bc,ab=4根号5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:02:13
:E是DC的中点,DE=EC=1/2DC=2ΔADE相似于ECBDE=2=2CB,那么AD=2EC=4S梯形abcd=1/2(AD+BC)×DC=10分析:直角梯形求面积,已知上底和高,求出下底AD.
给你一个简单的方法,不知道你是否欣赏AE=BE,证明如下证明:延长AD,交圆O于点H,连接AB∵BC是直径,AD⊥BC∴弧AB=弧BH∵弧AB=弧AF∴弧AF=弧BH∴∠ABE=∠BAE∴EA=EB
图自己画画看会清楚一点连结EO至Z点,(因为经过O图,所以是直径)角BED=角AEF(对顶角)所以弦BD=弦AF连结AO至Y点角BOY=角AOC,弦BY=弦AC所以弦BY-弦BD=弦AC-弦AF,得弦
证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免
图画不出来你确信题没有写错吗?应该是OPRQ是平行四边形才对啊延长CO,交圆O于点E.连接BE、AE则OP是△BCE的中位线∴OP=1/2BEAE∥BD则弧BE=弧AD∴BE=AD∵RQ=1/2AD(
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
1,弦AD平行于OC,∠BOC=∠BAD,∠COD=∠ADO,OD=OA,∠ADO=∠OAD=∠BAD,所以∠BOC=∠COD,故E是弧BD中点.(同圆中圆心角相等所对弧相等).2,∠BOC=∠COD
BC⊥AC,AC∥OD,CE=BE,弧CD=弧BD,角A=角BOD
证明:(1)∵BC是圆O的直径,∴∠BAC=90°,∴∠BAD+∠CAD=90°,又AD⊥BC,∴∠ACB+∠CAD=90°,∴∠BAD=∠ACB;(2)∵弧BA等于弧AF,∴∠ACB=∠ABF,∵∠
(1)证明:延长AD于圆交于点GBC为直径,且BC⊥AD,根据垂径定理,弧AB=弧BGA为弧BF中点,所以弧AF=弧AB=弧BG∠BAG和∠ABF分别为弧BG、弧AF所对圆周角因此∠BAG=∠ABF,
连接OB∵OA⊥BC∴垂径定理:BD=CD=1/2BC∵OB=OA=AD+OD=1+4=5∴OB²=BD²+OD²5²=BD²+4²那么BD
(1)∵BC⊥OA,∴BE=CE,AB=AC,又∵∠ADB=30°,∴∠AOC=60°;(2)∵BC=6,∴CE=12BC=3,在Rt△OCE中,OC=CEsin60°=23,∴OE=OC2-CE2=
这个题目有问题:(1)求证BG=GF,G只能是弦AE与BF的交点,所以G只能是在圆内.因为弧AE等于弧BF,所以弧AF与弧BE相等,所以GB=GA GE=
证明连接EF,交AD于G∵E,F分别是AB,AC的中点∴EF∥BC,GD=AD/2∵EF=AD∴GD=EF/2∵AD⊥BC∴AD⊥EF∴EF到BC的距离为EF/2∵直径为EF∴BC为圆O的切线再问:∵
两种可能,B,C在AD同边和异边,异边:角COD=2*角CAD=60度,所以角COB=角COD+角DOB=150度,由余弦公式,BC^2=OC^2+OB^2-2OC*OB*COS150度=50-50*
连接BO并延长交圆O于E,连接CE,可证∠BCE=90°∵∠ACB+∠ACE=90°,∠ADB+∠CAD=90°,∠ADB=∠ACB﹙等弧﹚∴∠ACE=∠CAD∴弧AD=弧CE∴AD=CE∵PO=1/
第一个问题:∵BC是直径,∴AB⊥AC,又AD⊥BC,∴∠BAE=∠ACB.[同是∠ABC的余角]∵弧AB=弧AF,∴AB=AF,∴∠ABE=∠AFE.∵A、B、C、F共
1)圆心O,弦AB,CD交于Q连接AO延长交圆P因为:AD弧上圆周角∠ABD=∠APD因为:AB,CD互相垂直,∠ADP直角所以:△ADP∽△DQB所以:∠DAP=∠CDB所以:DP=BC(对应的弦相
证明:连接DO,延长交圆于E.连接AEDE是直径,AD与AE垂直