A的平方-3A-10E=0,则A的逆=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:09:02
A的平方-3A-10E=0,则A的逆=
矩阵A满足A的三次方=0,求(E+A+A的平方)的负一次方

因为(E+A+A^2)(E-A)=E+A+A^2-A-A^2-A^3=E所以E+A+A^2可逆,且E+A+A^2的逆为E-A

设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3E-A)的逆矩阵

A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E

设A平方+A=E 证明(A-E)可逆 并求(A-E)的逆矩阵

A^2+A=E所以A^2+A-2E=-E,即(A+2E)(A-E)=-E,因此-(A+2E)(A-E)=E.同理(A-E)[-(A+2E)]=E所以(A-E)可逆,逆矩阵为-(A+2E)

设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵

移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设方阵A满足的平方-2A-E=0 ,证明A-2E 可逆,并求 (A-2E)的-1次方

因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

证明.若A的平方=B的平方=E,则(AB)的平方=E的充分必要条件是A与B可交换.

方向:因为(AB)^2=E即:A(BAB)=E所以A的逆=BAB又因为A^2=E所以A的逆=A所以A=BAB两边左乘B得到BA=BBABBB=E所以BA=ABA的逆就是A的逆矩阵难道你不知道?那是不可

设方阵A满足A平方+3A-E=0,则 (A+3E)的负1次方等于

A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A

已知a平方-3a+1=0 则 a平方+a平方分之一=

a^2-3a+1=0等式两边同时除以a,得a-3+1/a=0,即a+1/a=3a^2+1/a^2=(a+1/a)^2-2(完全平方公式)=3^2-2=7

设n阶矩阵A 有A的平方-2A-4E=0 求A+E可逆 (A+E)负1次方

(A+E)(A-3E)=E所以A+E可逆(A+E)^(-1)=A-3E

设方阵A满足方程A平方-3A-10E=0,则A-1次方=

由:A^2-3A-10E=0得:A^2-3A=10E得:(1/10)[A^2-3A]=E即:(1/10)A(A-3E)=E.按定义有:A^(-1)=(1/10)(A-3E).(若AB=E,则A^(-1

设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3A-E)的逆矩阵

A*A-5A+7E=A(A-3E)-2A+7E=A(A-3E)-2(A-3E)+E=(A-2E)(A-3E)+E=0∴(A-3E)(E-2A)=E∴A-3E可逆,逆矩阵是E-2A

为什么矩阵A的平方等于A,则A等于E或0不对

A^2=A,则(A-E)A=0,若A可逆,则A-E=0,A=E;若A-E可逆,则A=0;但如果A,A-E都不可逆,那么不能有A等于E或0;反例:0001

矩阵A的平方等于E,则A+E=0或A-E=0这句话哪里错了?

你这句话就没有对的.A^2=0,能推导出(A-E)(A+E)=0或者(A+E)(A-E)=0.你应该知道AX=0是什么意思吧,难道AX=0就一定是方程组A等于0或它的解向量X就等于0,很明显是错误的.

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

线性代数题,(A-E)的平方=0,能推出A=E吗?

不能,例如A=1101(A-E)=0100(A-E)(A-E)=0

如果方阵A满足A平方-A-2E=0,试证A+2E可逆,并求A+2E的逆

A^2-A-2E=0A^2-A-6E=-4E(A+2E)(A-3E)=-4E(A+2E)[(A-3E)/-4]=E逆为[-(A-3E)/4]

已知a的平方-3a+1=0,求a+a/1 a的平方+a的平方/1和(a-a/1)的平方

a^2-3a+1=0等式两边同除以aa-3+1/a=0a+1/a=3a^2+1/a^2=(a+1/a)^2-2=3^2-2=7(a-1/a)^2=(a+1/a)^2-4=3^2-4=5再问:倒着的尖的

求函数f(x)=(e的x次方-a)的平方+(e的-x次方-a)的平方(0

对于这个问题应该先化简f(x)=(e的x次方-+e的-x次方-a)平方+a平方-2然后根据均值不等式就可以得出上面的结论一般情况下对于这类问题不能对(e的x次方-a)的平方和(e的-x次方-a)的平方