设n阶矩阵A 有A的平方-2A-4E=0 求A+E可逆 (A+E)负1次方
设n阶矩阵A 有A的平方-2A-4E=0 求A+E可逆 (A+E)负1次方
线性代数逆矩阵题设N阶矩阵A满足A的M方=0,M是正整数.试证E-A可逆,且(E-A)的-1次方=E+A+A的平方+A的
已知:n阶矩阵A满足A=A平方,证明:E-2A可逆且(E-2A)的负一次方等于E-2A
设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3E-A)的逆矩阵
设n 阶方阵A 满足A(2次方)-A+2E=0 ,证明:A-E 可逆,并求(A-E)-1次方
设方阵A满足A的3次方-2A+3E=0,证明A+E可逆,并求(A+E)的逆矩阵
设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵
设矩阵A满足A的平方=E,证明A+2E是可逆矩阵
设n阶矩阵A满足A的m次方等于0,m是正整数,证明E-A可逆,且E-A的逆矩阵等于E+A+A^2+A^3+.+A^m-1
设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程.
设n阶矩阵A满足A^2+2A–3E=0,证明A+4E可逆,并求它们的逆.
已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)