A是n阶矩阵,证明A的k次方的迹等于A特征值的k次方的和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:17:14
A是n阶矩阵,证明A的k次方的迹等于A特征值的k次方的和
线性代数矩阵题设A为n阶矩阵,A的k次方=0,k大于1为整数,证明En-A可逆,且(En-A)的逆矩阵=En+A+A的平

我们知道,如果矩阵B和C成立BC=En,则B和C互为逆矩阵,从而当然B和C都是可逆的.用这个知识,本题只要证明(En-A)*(En+A+A的平方+……+A的k-1次方)=En即可,这很简单可得.

设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…

由于(E-A)(E+A+A²+...A的k-1次方)=(E+A+A²+...A的k-1次方)-(A+A²+...A的k次方)(注意抵消规律)=E-A的k次方=E-0=E所

设A是数域K上的n级矩阵,证明:如果K^n中任意非零列向量都是A的特征向量,则A一定是数量矩阵.

设A=(aij)i,j=1,.,n.设列向量ei=(0,...,0,1,0,...,0)^T,其中1是第i个坐标,i=1,2,...,n.K^n中任意非零列向量都是A的特征向量===>Aei=tiei

A是n阶正定矩阵,证明A的伴随矩阵也是正定矩阵

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

矩阵A是元全为1的n阶矩阵(n>=2),证明A^k=n^k-1A(k是》2为正整数)

由矩阵的乘法定义可知A^2=nA所以A^3=A^2A=nAA=nA^2=n^2A.由归纳法可得A^k=AA^(k-1)=A(n^(k-2)A)=n^(k-2)A^2=n^(k-1)A.

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

证明与任意n阶矩阵都可以交换的矩阵A只能是数量矩阵

A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.

设A为n阶方阵,k是常数,证明:|kA|=k的n次方|A|

这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|

设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆

A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法

设n阶矩阵A满足A的2次方=E,证明A的特征值只能是正负1

Aa=ra,a不为0向量,r为特征根.a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a=>r^2=1,r=1or-1.

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设A是n阶矩阵,若存在正整数k,使A的k次方为o矩阵,求证矩阵A的特征值为0

设a是A的特征值则a^k是A^k的特征值(定理)而A^k=0,零矩阵的特征值只能是0所以a^k=0所以a=0即A的特征值只能是0.

如果λ是n阶矩阵A的特征值.证明:λ的m次方是A的m次方的特征值

这是定理中(1)的一个特殊情况.对 Aα = λα 两边连续左乘A即得.

A为n阶矩阵, 证:tr(A^k)=A的各个特征值的k次方之和

设a1,...,an是A的特征值则a1^k,...,an^k是A^k的特征值(定理结论)所以tr(A^k)=a1^k+...+an^k.(定理)

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

已知A是n阶正交矩阵,A*是A的伴随矩阵,证明A*是正交矩阵.

detA=1ordetA=1A*A=EorA*A=-EA*=A^TorA*=-A^TA*^T=AorA*^T=-A,A*^TA*=A*A*^T=E所以:A*是正交矩阵.再问:看不懂。。它中间那个or要

设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆

根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆

n阶方阵A,(kA)的伴随矩阵=(k的n-1次方)乘以 A的伴随阵,怎么证明?

伴随矩阵是它的每个元素的代数余子式组成的,而kA的代数余子式是A的代数余子式的每个元素乘以k,A的代数余子式是n-1阶的,把n-1行的k提出来,就是k的n-1次方了