A是n阶实矩阵,b是任意的n维向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 09:01:45
A是n阶实矩阵,b是任意的n维向量
设A是n阶实对称矩阵 证明:A是半正定矩阵当且仅当对任意n阶半正定矩阵B都有tr(AB)大于等于

必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t

证明n阶方阵A为正交矩阵的充要条件是对任意n维列向量a都有|Aa|=|a|

充分性:如果A=βα,那么r(A)再问:不懂,怎么和秩联系了呢再答:采纳我,我加你qq再问:不理解再答:我加你qq,现在把我选为满意答案,谢谢

设A是n阶实矩阵,b是任意的n维向量,证明线性方程组ATAx=ATb有解.其中AT表示A的转置

这是最小二乘解,解释有点麻烦,楼主看下线性代数中最小二乘法吧

设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零

因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

证明与任意n阶矩阵都可以交换的矩阵A只能是数量矩阵

A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.

证明:与任意n阶矩阵都可以交换的矩阵A只能是数量矩阵,即A=kE.

只要如图中那样取一些容易算的矩阵就可以推出结果了.经济数学团队帮你解答,请及时采纳.

与任意n阶矩阵都可以交换的矩阵A只能是数量矩阵,即A=kE.

可以如图中那样取一些容易计算的矩阵就可以推出结果了.经济数学团队帮你解答,请及时采纳.

设A为n阶实矩阵,证明A是正交矩阵当且仅当对任意的n维向量α,β有(Aα,Aβ)=(α,β)

(α,β)=β^Tα,(Aα,Aβ)=β^TA^TAα  显然当A是正交阵的时候(Aα,Aβ)=(α,β)  反过来,令M=A^TA,M是一个对称阵  取α=β=e_i得到M(i,i)=1,这里e_i

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A是n阶实矩阵,b是任意的n维列向量,证明线性方程组A^TAx=A^Tb有解

用判别法则rank(A^TA,A^Tb)>=rank(A^TA)同时rank(A^TA,A^Tb)=rankA^T(A,b)

1.设N是可逆矩阵A的一个特征值,则 A.N是任意数 B.N>0 C.N不等于0 D.N<0

1.选C,因为只要有一个特征值为0,那个这个矩阵对应的行列式的值就为0,那么就不可逆了.2.选B,初等矩阵是指,由单位矩阵经过一次矩阵初等变换得到的矩阵.那么你同样可以把4个选项分别作初等变化看能不能

高数现代矩阵题A=E-2a*aT,E是m阶单位矩阵,a是n维单位列向量,证明任意一个n维列向量B,都有||AB||=||

||Aβ||²=Aββ'A'=﹙E-2αα'﹚ββ'﹙E-2αα'﹚=ββ'-2ββ'αα'-2αα'ββ'+4αα'ββ'αα'注意α‘αβ’βα‘β=β’α都是“数”﹙1行1列﹚可以和矩

设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵

由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!

n阶矩阵A和对角矩阵相似的充分条件是:A有n个不同的特征值和A是实对称矩阵.我想问:一般题目是证明n阶矩阵A和B相似,这

你的做法最多仅适用于A和B都可对角化的情况,如果B不可对角化你的做法就失效了即使A和B都可对角化,你还得额外证明它们的特征值完全相同(或者特征多项式相同)一般来讲要证明两个矩阵相似最好还是直接构造相似

求证,多谢! A、B是n阶实对称正定矩阵,求证:若A-B正定,则B的逆矩阵-A的逆矩阵正定

取可逆阵C使得A=CC^T,那么A-B正定等价于I-C^{-1}BC^{-T}正定,再分析后者的特征值即可.更省事的做法是B^{-1}-A^{-1}=A^{-1}(A-B)A^{-1}+A^{-1}(

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

分块矩阵问题.矩阵 (O AB O) 的逆矩阵怎么求?A是n阶矩阵 B是s阶矩阵 A B都可逆

第一行乘以矩阵A加到第二行,行列式变成了一个上三角形形|-BI||0-2B逆|,所以原式=|-B|×|-2B逆|=(-1)^n×|B|×(-2)^n×|B逆|=2^n.请采纳.再问:没看懂。答案是(O

a是m*n矩阵,b是n*m矩阵,ab是几阶矩阵?如果是m阶矩阵,为什么?题目中未说明m和n的大小?

是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.