a是n阶可逆矩阵,齐次方程组Ax=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:52:15
可以用矩阵运算如图凑出E-BA的逆矩阵.经济数学团队帮你解答,请及时采纳.再问:有没有简便的方法啊?再答:如果要求出逆矩阵,只能这样做。若只是证可逆,还可用公式|E-BA|=|E-AB|,行列式非零,
反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾
证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
选3可逆所以|A|不等于0其次方程组只有唯一解0,非齐次只有唯一解2是万能公式一定对
记号:[A,B;C,D]表示2X2分块矩阵,第一行块为A,B,第2行块为C,D.考虑[E-AB,0;B,E],将其第二行块左乘A加到第一行块得[E,A;B,E],再将第一行块左乘-B加到第2行块得到[
单位阵当然正定,这有什么好问的
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
由A^3=3A(A-I)得(A^2-2A+I)(I-A)=I所以I-A可逆,且(I-A)^(-1)=A^2-2A+I(A-I)因子:由A^3=3A(A-I)得:A^3-3A^2+3A=0A^2(A-I
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
|A|E=(|A||A|.|A|),|A|位于对角线上
看到几个证明,感觉思路不清晰.还是按定理直接证好些.证明:因为(I+BA)[I-B(I+AB)^-1A]=(I+BA)-(I+BA)B(I+AB)^-1A=I+BA-B(I+AB)^-1A-BAB(I
由(AB)(B^(-1)A^(-1))=A(B·B(-1))A^(-1)=AEA^(-1)=AA^-1=E这说明(AB)^-1=B^(-1)*A^(-1).
首先要有这个概念:方程组Ax=β有解当且仅当β可由A的列向量组线性表示.若这个结论没问题,就可以这样证明充分性因为对任意n维向量β,方程组Ax=β有解所以任一n维向量都可由A的列向量组线性表示特别地,
线性方程组A1=b--这是什么线性方程组再问:少写了个x应该是A1X=b再答:这是什么题呀,A1x是r行,b是n行,不能相等呀再问:是呀,太坑人了。不过要谢谢老师再答:你只要记住:行满秩时一定有解,若
对选项(A)和(B):举反例A=1212,任一行列向量都是非零向量,但A不可逆;故排除选项A和B.对选项(C):举反例,如A为n阶方阵,.A为增广矩阵,当:r(A)=r(.A)<n时,Ax=b有无穷多
只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A