a上的自反关系有多少个
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:11:15
显然R∩R^-1是自反和传递的,因而只需证明R∩R^-1是对称的即可任给(x,y)属于R∩R^-1,即xRy且xR^-1y,则易知yR-1x且yRx即(x,y)属于R∩R^-1.所以R∩R^-1是对称
这个的答案是:贝尔数(BellNumber)没有准确求出BellNumber的公式,只能递推.A上的等价关系与集合A的划分一一对应,所以只要求出A的划分数即可.所谓A的划分,是指把A分成子集A1、A2
若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.
1,自反加传递的选A2,不知道你的一对一是什么意思,如果是单射的意思就选A,若不是就选B3,非(P交Q)等价于非P并非Q选C4,选BP假Q假为真5,只有P真Q假时P->Q为假,选C6,X,Y为约束,Z
设关系为F(a,b)自反性=对任意元素a证F(a,a)成立反自反性=对任意元素a证F(a,a)不成立对称性=对任意两个元素,若F(a,b)证F(b,a)成立反对称性=对任意两个元素,若F(a,b)证F
A={a,b,c,d,e},则只有{(a,a),(b,b),(c,c)(d,d),(e,e)}是自反如果说R={(a,a),(c,c)}是自反的那么,当A取b时,b和b就没关系了,因为这时你选的关系里
一个二元关系与一个关系矩阵是一一对应的,所以只要满足条件的二元关系的关系矩阵数目即可.如果即为对称又为反对称的二元关系,其关系只能是主对角线上元素,故有2^n种;而反对称的二元关系矩阵满足,若Rij=
R={(a,a),(a,b),(b,a),(b,c)}因为R中没有(b,b)或(c,c),故R不自反;因为R中有(a,a),故R不反自反;因为R中有(b,c)但没有(c,b),故R不称性;因为R中有(
/>inta=3,b=4;//定义两个变量a和b,并赋值charstr='c';//定义一个字符变量,值为'c'printf(“%d,%d”,a,b,str);//把a和b显示到屏幕上,%d意思是显示
A*A={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)}自反关系:{(a,a)}{(b,b)}{(c,c)}{(a,b)(b,a)}{(a
1、R是自反关系则(b,b)属于R2、当(a,b)属于R,利用1可以得到(b,a)属于R,对称性得证3、R具备反身、对称、传递故等价关系
1.既然要对称,DeltaA就在里面,其他的关于对角线成对出现,对角线以上共有1+2+3+...+(n-1)个元,故共有2^{1+2+3+...+(n-1)}个自反且对称的关系.2.那就是说,对角线不
集合A上的等价关系与集合A的划分是一一对应的,集合的划分就是把集合分解为几个不相交的非空子集的并集.n=1时,只有一个划分;n=2时,一个划分块的情形有1个,2个划分块的有1个,共2种划分;n=3时,
在逻辑学和数学中,集合X上的二元关系R是自反的,若所有a属于X,a关系到其自身. 数学上表示为:<math\foralla\inX,\aRa</math 例如:大于等于是种自反关系,但
若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.
A与A自己等价
先要说等价关系的自反性这个是等价关系的一个基本性质就是说a等价于b那么b也等价于a你说的这个就是说a与b是等价的无穷小那么b与a也是等价的无穷小
有2的n次个关系再问:其他的答案呢谢谢啦再答:关于对称性的我不太清楚,不好意思了!
必要性:当r是a上的等价关系时,由等价关系的传递性,显然有属于r且属于r时,有属于r.充分性:由r是a上自反性关系,所以自反性自然成立.于是∈r,若∈r.则由∈r且∈r(注意书写顺序),有∈r,(若写
反自反关系容易做,反对称关系与对称关系一样不容易做.反自反关系有2^6=64种反自反关系的关系矩阵是对角线元素均为零的矩阵,这些矩阵的个数是2^6.元素仅由0,1构成的3阶矩阵有多少种对角线元素均为零