a^2=a,a是矩阵,若a的秩是r求a-e的秩

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 16:43:46
a^2=a,a是矩阵,若a的秩是r求a-e的秩
设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

线性代数逆矩阵那一节的定理2:若|A|不等于0,则矩阵A可逆,A^(-1)=(1/|A|)*(A*),A*为矩阵A的伴随

AB=BA=E是A^(-1)=B,B^(-1)=A的充分必要条件.AB=BA只能说AB满足乘法的交换律.再问:逆阵的意思不是说AB=BA,而A就是可逆这意思吗?为什么它要等于E?再答:定义中要求的,没

设a*是三阶方阵a的伴随矩阵,若|a|=2,则||A|A*|=?

可用行列式的性质如图计算,答案是32.经济数学团队帮你解答,请及时采纳.

设A*是三阶方阵A的伴随矩阵,若|A|=2,则秩R(A*)=?

3,A*也是满秩的因为A可逆,所以A*A=|A|E,也就是说A为A*的逆,所以A*也是满秩的

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)

因为A可相似对角化所以A与对角矩阵B相似,且B的主对角线上的元素都是A的特征值而相似矩阵的秩相同所以对角矩阵B的秩也是为2所以A的非零特征值的个数为2故特征值为0,-2,-2总结:可对角化的矩阵的秩等

设A是2阶非零矩阵,A的平方等于O矩阵,求A的秩

R(A)=1.A为非零矩阵.所以R(A)>0.若R(A)=2则detA不为零det(A*A)=det(A)det(A).命题得证!

证明(A*)'=(A')*,并且若矩阵A可逆,则A*也可逆A*是指A的伴随矩阵,A'是A的转置

由A*=|A|A^-1得(A*)'=|A|(A^-1)'对A'也有(A')*=|A'|(A')^-1=|A|(A')^-1而(A^-1)'=(A')^-1--这个也是性质,易证所以(A*)'=(A')

设n阶矩阵A的秩为1,证明A^2=tr(A)A

知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.

设A是三阶矩阵,A*为A的伴随矩阵,|A|=-2,则|(-1/3A)^-1+A*|=?答案是125/2,

A*=|A|A^-1=-2A^-1(-1/3A)^-1=-3A^-1所以|(-1/3)^-1+A*|=|-3A^-1-2A^-1|=|-5A^-1|=(-5)^3|A|^-1=-125/(-2)=12

若5阶方阵A的伴随矩阵A*,且|A|=2,则|A*|=

AA*=|A|E两边取行列式:|A||A*|=|A|^n所以|A*|=|A|^n/|A|=|A|^n-1=2^4=16.

A是矩阵,若A^2=A,则A的特征值只能为1和0

设a是A的特征值则a^2-a是A^2-A的特征值由于A^2-A=0,而零矩阵的特征值只能是0所以a^2-a=0所以a只能是1,0

A为三阶方阵,A*是A的伴随矩阵,|A|=2,|A*|

|A*|=|A|^(n-1)=2^2=4.证:A*=|A|A^(-1),得|A*|=|A|^n*|A^(-1)|=|A|^(n-1).

设n阶矩阵A满足A^2=A,A不等于I,则A a A是满秩 b A是零矩阵 c A的秩小于n d 以均不对

因为A^2=A所以A(A-E)=0所以r(A)+r(A-E)0所以r(A)故(C)正确.再问:A(A-E)=0到r(A)+r(A-E)

设三阶方阵A的行列式[A]=2,A*是其伴随矩阵,则[A*]=?

知识点:|A*|=|A|^(n-1),其中n是A的阶.所以|A*|=|A|^(3-1)=2^2=4再答:记住公式就好了再答:亲,你的问题我已经回答完毕,如有不明白,请继续追问,满意的话请点一下右上角【

线性代数矩阵的秩问题若矩阵A=(1,2,32,3,-54,7,1) 则矩阵A的秩是2但是把A的第二和第三行调换则A变成B

因为r(A)=2,说明A的所有3阶子式均为0,否则r(A)≥3,再根据伴随矩阵的定义可知,4阶矩阵的伴随矩阵元素均是3阶子式,即A*=0,所以r(A*)=0再问:看清楚我问的问题没有..真讨厌你这种人

A是三阶矩阵,|A|=2,A的伴随矩阵是A*,则|2A*|=

|2A*|=2^3|A*|=8|A|^(3-1)=8*2^2=32用到2个性质1.|kA|=k^n|A|2.|A*|=|A|^(n-1)

A是n阶矩阵,行列式|A|=2,若矩阵A +E不可逆,则矩阵A的伴随矩阵A*必有特征值?

因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值