arctan根号x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:11:59
设u=√(y/x)u'x=(-1/2)x^(-3/2)y^(1/2)u'y=(1/2)(xy)^(-1/2)那么原式变成了arctanu=(1/u^2)所以(u^2)arctanu=1两边取全微分得到
∫arctan√xdx=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx=xarctan√x-1/2*∫√x/(1+x)*dx(令√x=t,则x=t^2,dx=2tdt)=xa
t=arctan√x,sect=√(1+x),x=tan²t,dx=2tant*sec²tdt原式=∫2td(sect)=2t*sect-2∫sectdt=2t*sect-2ln|
对于极限的证明,高中是不作要求的.大学的证明过程如下:证明:存在一个足够大的正实数G>0,对于任意的x>G,有tan|arctan(x)-pi/2|=cot(arctanx)=1/tan[arctan
∫arctan(√x)dx分部积分=xarctan(√x)-∫x/(1+x)d(√x)=xarctan(√x)-∫(x+1-1)/(1+x)d(√x)=xarctan(√x)-∫1d(√x)+∫1/(
symsx;y=atan((x^2-1)^(1/2))-log(x)/((x^2-1)^(1/2))y=atan((x^2-1)^(1/2))-log(x)/(x^2-1)^(1/2)>>diff(y
y=xarcsin√[x/(1+x)]+arctan√(x-√2)-√x,求导dy/dx=arcsin√[x/(1+x)]+x{√[x/(1+x)]}′/√[1-x/(1+x)]+[√(x-√2)]′
(1)3-x≥0且x≠0x≤3且x≠0定义域{x|x≤3且x≠0}
就是tan值为根号二的角是多少度的意思
令根号下x-1=t,则x=t^2+1,t>0d(x^2arctan根号下X-1)=d((t^2+1)^2arctant)=[2(t^2+1)*2t*arctant+t^2+1)^2*1/(t^2+1)
dz/dx=y*x^(y/2-1)/2(1+x^y)dz/dy=lnx*x^(y/2)/2(1+x^y)
定义域x>0值域0<y<π/2,
差不多,但是有小区别.arctan(x/y)的范围是(-π/2,π/2)而arctan(x,y)的范围是(-π,π]http://www.cplusplus.com/reference/clibrar
原式=(-2)∫arctan根号(x)d根号(1-x)=(-2)根号(1-x)arctan根号(x)+2∫根号(1-x)darctan根号(x)2∫根号(1-x)darctan根号(x)中设x=(si
因为,(tanx)’=1/cos²x,Y^(-1){Y的反函数}=tanx所以y^(-1)=(-2)·√(1-3x)/3·coos²√(1-3x)因为y’=1/[y^(-1)]ˊ所
tan(arctanx+arctanp)=[tanarctanx+tanarctanp]/[1-(tanarctanx)(tanarctanp)]=(x+p)/(1-xp)这就是公式.
应该是说:tan[-arctan(-x)]=tan[-π+arctanx]等于再问:不加tan就不对了是么?再答:不加不对,
分步积分法原式=xarctan√x-∫xdarctan√x=xarctan√x-∫x/(1+x)dx=xarctan√x-∫(x+1-1)/(1+x)dx=xarctan√x-∫[1-1/(1+x)]
∫(arctan√x)/[√x(1+x)]dx=∫(arctan√x)/(1+x)d(2√x)=2∫(arctan√x)/[1+(√x)²]d(√x)=2∫arctan√xd(arctan√