arcsinx的定积分0到1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:02:22
第一个1/(x^2+2x+2)^0.5的定积分可以化简成1/((x+1)^2+1)^0.5,然后把(x+1)当成u,du/dx=1,所以du=dx,所以原式可以换成∫1/(u^2+1)^0.5du,这
原式=∫(0→1)√(1-(x-1)^2)d(x-1)令x-1=sint则原式=∫(-π/2→0)cost*costdt=∫(-π/2→0)(cos(2t)+1)/2dt=1/4∫(-π/2→0)co
∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C=(x-1)*e^x+C所以定积分=(π/2-1)*e^(π/2)-(-1)*e^0=(π/2-1)*e^(π/2)+1
The answer is π/12+√3/2-1Steps:
∫(0~1)2x√(1-x²)arcsinxdx令x=siny,dx=cosydy,√(1-x²)=√(1-sin²y)=cosyx∈[0,1]→y∈[0,π/2]=∫(
分部积分:∫(0-1)(arcsinx)^2dx=x(arcsinx)^2|(0,1)-∫(0,1)2x(arcsinx)dx/√(1-x^2)=(π/2)^2+∫(0,1)2(arcsinx)d√(
原式=∫(0,π/2)cosxdx-∫(π/2,π)cosxdx=(sinx)│(0,π/2)-(sinx)│(π/2,π)=(1-0)-(0-1)=2
令arcsinx=t.∫(arcsinx)²dx{0→1}=∫t²d(sint){0→π/2}=t²sint{0→π/2}-2∫tsintdt{0→π/2}=π²
先计算M=积分(从0到pi/2)lnsintdt因为sint=2sintcost,lnsint=ln2+lnsin(t/2)+lncos(t/2)故M=pi*ln2/2+积分(从0到pi/2)lnsi
0到4的定积分|2-x|dx=0到2的定积分(-2+x)dx+2到4的定积分(2-x)dx=-2+2=0
用分部积分法...
∫[1-COS2(wt+∮)]dt=t-(1/2w)sin2(wt+∮)|[0,T]=T-(1/2w)sin2(wT+∮)+(1/2w)sin2∮不明白可以追问,如果有帮助,请选为满意回答!再问:后面
设t=arcosx,则x=cost,0=cosπ/2,1/2=cosπ/3
∫xe^(x^2)dx=(1/2)∫e^(x^2)d(x^2)=(1/2)e^(x^2)+C(C为常数)代入上下限,可知原积分=(e-1)/2
本题其实是两个问题,下面分别
(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.
因为lnx在0处无定义,这是一个瑕积分,首先用分部积分法,下面[0,1]表示0为下限,1为上限∫[0,1]lnxdx=xlnx[0,1]-∫[0,1]x*(1/x)dx=0-∫[0,1]1dx=-1注