apcp分别是abc的外角角mac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:12:43
apcp分别是abc的外角角mac
如图:已知 BP,CP 分别是△ABC 的∠ABC,∠ACB 的外角角平分线,BP,CP 相交 于 P,试探索∠BPC

因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB

如图,在△ABC中,BM、CN分别平分∠ABC、∠ACB的外角,AM⊥BM,AN⊥CN,垂足分别为M、N

证明:延长AM,交CB的延长线于F延长AN,交BC延长线于点G因为BM平分∠ABF,AM⊥BM所以,可以通过全等,证明AM=FM,AB=FB同理AN=NG,AC=CG所以MN//FG(MN是三角形AF

1、在三角形ABC 中,∠ABC=12°,∠ACB=132°,BM和CN 分别是这两个角的外角平分线,且点M、N分别在直

(1)由题知道∠CBM=1/2(180°-∠ABC)=1/2(180°-12)=84°∠BCM=180-∠ACB=48°由三角形内角和∠BMC=180-84-48=48°所以BM=BC∠ACN=1/2

如图,在三角形ABC中,BD、CD是内角开分线,BP、CP分别是角ABC和角ACB的外角平分线,

根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B

在三角形ABC中,BD、CD分别是角ABC、角ACB的平分线,BP CP分别是角ABC、角ACB的外角平分线

设△ABC中,∠ABC和∠ACB的内角平分线交于D,∠ABC的内角平分线与∠ACB的外角平分线交于E,∠ABC的外角平分线与∠ACB的外角平分线交于P,则有下列关系成立:①∠BDC=90+∠A/2②∠

如图,BF是三角形ABC的角平分线,AM垂直BF于M,CE平分三角形ABC的外角,AN垂直CE于N

(1)证明:分别延长AM,AN分别交BC及BC的延长线于G,H因为AM垂直BF于M所以角AMB=角GMB=90度因为BF是三角形ABC的角平分线所以角ABM=角GBM因为BM=BM所以三角形ABM和三

已知:如图,BP,CP分别是三角形ABC的外角

过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC

已知 △ABC中 BP、CP分别是外角∠DBC、BCE的角平分线 求证 AP平分∠BAC

证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC

在三角形ABC中,BP、CP分别是三角形ABC的外角角DBC,角ECB的平分线,且角A=50度,则

∵BP、CP分别是∠CBD和∠BCE的角平分线∴∠CBP=1/2∠CBD,∠BCP=1/2∠BCE∴∠CBP+∠BCP=1/2(∠CBD+∠BCE)=1/2(180°-∠ABC+180°-∠ACB)=

如图,cd,ce分别是△abc的内角平分线和外角平分线,求角dce的度数

∠dce=90°∵dc平分∠acb,∴∠dcb=∠acd=½∠acb∵ec平分∠acb的外角,∴∠ace=∠ecf=½∠acf(f为角acb的延伸线)∵c在bf上∴∠acb+∠ac

在△ABC中CD,CF分别是三角形ABC的内角与外角平分线,DF平行BC...

∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=

如图,已知:CD,CF分别是三角形ABC的内角平分线和外角平分线,

∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=

AP,CP分别是△ABC的外角∠MAC与∠NCA的平分线

证明:在△APD和△APE中因为AP平分∠MAC所以DP=EP,(角平分线的性质)同理PE=PF所以PD=PF所以P在∠MBN的角平分线上所以PB平方∠MBN

三角形ABC中,AP CP分别是外角平分线,证BP是角ABC的平分线

过P作PF⊥AC,交AC于F过P作PE⊥BC,交BC延长线于E过P作PG⊥AB,交AB延长线于G因为AP平分∠GAC,所以PG=PF(角平分线上的点到角两边距离相等)因为CP平分∠ACE所以PF=PE

已知:PB,PC分别是△ABC的外角平分线,PM,PN垂直AB,AC,点M N为垂足,

(1)证明:作PD⊥BC于点D∵BP是角平分线∴PM=PD∵CP是角平分线∴PN=PD∴PM=PN(2)∵PM=PN∴N在∠MAN的平分线上∴AP平分∠MAN

在三角形ABC中,BF,CF分别是三角形ABC两个外角的角平分线,且角F=40度,则较A=?

∵∠F=40°∴∠FBC+∠FCB=180-40=140°∴∠ABC+∠ACB=2×180-2×140=80°∴∠A=180-80=100°

如图角ACD是三角形ABC的外角,BE、CE分别平分角ABC和角ACD,且BE、CE交于点E.求

 再问:看不懂哎能详细点吗?谢谢再答:解方程再答:外角等于不相邻两内角和再问:好的懂了谢谢