apcp分别是abc的外角角mac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:12:43
因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB
证明:延长AM,交CB的延长线于F延长AN,交BC延长线于点G因为BM平分∠ABF,AM⊥BM所以,可以通过全等,证明AM=FM,AB=FB同理AN=NG,AC=CG所以MN//FG(MN是三角形AF
90度啊很显然吧?
(1)由题知道∠CBM=1/2(180°-∠ABC)=1/2(180°-12)=84°∠BCM=180-∠ACB=48°由三角形内角和∠BMC=180-84-48=48°所以BM=BC∠ACN=1/2
根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B
设△ABC中,∠ABC和∠ACB的内角平分线交于D,∠ABC的内角平分线与∠ACB的外角平分线交于E,∠ABC的外角平分线与∠ACB的外角平分线交于P,则有下列关系成立:①∠BDC=90+∠A/2②∠
(1)证明:分别延长AM,AN分别交BC及BC的延长线于G,H因为AM垂直BF于M所以角AMB=角GMB=90度因为BF是三角形ABC的角平分线所以角ABM=角GBM因为BM=BM所以三角形ABM和三
过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
∵BP、CP分别是∠CBD和∠BCE的角平分线∴∠CBP=1/2∠CBD,∠BCP=1/2∠BCE∴∠CBP+∠BCP=1/2(∠CBD+∠BCE)=1/2(180°-∠ABC+180°-∠ACB)=
∠dce=90°∵dc平分∠acb,∴∠dcb=∠acd=½∠acb∵ec平分∠acb的外角,∴∠ace=∠ecf=½∠acf(f为角acb的延伸线)∵c在bf上∴∠acb+∠ac
∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=
∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=
不是连接AP因为BP平分
证明:在△APD和△APE中因为AP平分∠MAC所以DP=EP,(角平分线的性质)同理PE=PF所以PD=PF所以P在∠MBN的角平分线上所以PB平方∠MBN
过P作PF⊥AC,交AC于F过P作PE⊥BC,交BC延长线于E过P作PG⊥AB,交AB延长线于G因为AP平分∠GAC,所以PG=PF(角平分线上的点到角两边距离相等)因为CP平分∠ACE所以PF=PE
(1)证明:作PD⊥BC于点D∵BP是角平分线∴PM=PD∵CP是角平分线∴PN=PD∴PM=PN(2)∵PM=PN∴N在∠MAN的平分线上∴AP平分∠MAN
∵∠F=40°∴∠FBC+∠FCB=180-40=140°∴∠ABC+∠ACB=2×180-2×140=80°∴∠A=180-80=100°
再问:看不懂哎能详细点吗?谢谢再答:解方程再答:外角等于不相邻两内角和再问:好的懂了谢谢